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S U M M A R Y
In this paper, we introduce the so-called symplectic discrete singular convolution differentiator
(SDSCD) method for structure-preserving modelling of elastic waves. In the method presented,
physical space is discretized by the DSCD, whereas an explicit third-order symplectic scheme
is used for the time discretization. This approach uses optimization and truncation to form a
localized operator. This preserves the fine structure of the wavefield in complex media and
avoids non-causal interaction when parameter discontinuities are present in the medium. The-
oretically, the approach presented is a structure-preserving algorithm. Also, some numerical
experiments are shown in this paper. Elastic wavefield modelling experiments on a laterally
heterogeneous medium with high parameter contrasts demonstrate the superior performance
of the SDSCD for suppression of numerical dispersion. Long-term computational experi-
ments exhibit the remarkable capability of the approach presented for long-time simulations.
Promising numerical results suggest the SDSCD is suitable for high-precision and long-time
numerical simulations, as it has structure-preserving property and it can suppress effectively
numerical dispersion when coarse grids are used.

Key words: Numerical solutions; Numerical approximations and analysis; Body waves;
Computational seismology; Wave propagation.

I N T RO D U C T I O N

High-precision elastic wave modelling becomes increasingly im-
portant due to demands for seismological research and seismic ex-
ploration. Especially, high-precision or long-time modelling of seis-
mic wave propagation is required when dealing with seismic wave
propagation in highly heterogeneous media, seismic wave inversion,
high-resolution seismic wave imaging, and long-time modelling of
seismic wave is required for Earth’s free oscillations modelling and
seismic noise propagation modelling. Generally, seismic modelling
methods can be classified into three categories: direct methods,
integral-equation methods and ray tracing methods. Carcione et al.
(2002) gave a classical review of these methods. In this paper, em-
phasis is placed on direct methods.

Modelling seismic waves in the time domain using direct meth-
ods involves discretization of both space and time derivatives. In
the past tens years, the traditional finite difference methods (non-
symplectic schemes) for temporal discretizations has been widely
used. Because the classical finite difference methods for temporal
discretizations are not structure-preserving schemes, it is extremely
difficult to avoid accumulated errors in precise or long-time nu-
merical simulations for partial differential equations using these
methods. When solving differential equations numerically, some

numerical algorithms can preserve the corresponding structures.
This can be called the structure-preserving property of a numer-
ical algorithm. The structure-preserving property of symplectic
algorithms is well known. Theoretically, a numerical method for
Hamiltonian dynamical systems can be called a symplectic algo-
rithm if the resulting numerical solution is also a symplectic map-
ping. Some symplectic algorithms for partial differential equations
have been developed and used, such as Lax–Wendroff methods
(Lax & Wendroff 1960; Carcione et al. 2002) and Nyström meth-
ods (Qin & Zhu 1991; Okunbor & Skeel 1992; Calvo & Sanz-
Serna 1993; Hairer et al. 1993; Tsitouras 1999; Blanes & Moan
2002; Lunk & Simen 2005). Chen (2009) discussed the structure-
preserving property of Lax–Wendroff and Nyström methods in
detail.

The most widely used direct methods for spatial discretiza-
tions are: classical finite difference (FD) methods (Claerbout 1985;
Bayliss et al. 1986; Levander 1988), pseudospectral methods
(Gazdag 1981) and finite element methods (Ciarlet & Lions 1991).
Some optimized methods or combinations of these methods are also
available, such as optimized finite difference methods (Holberg
1987; Geller & Takeuchi 1998; Takeuchi & Geller 2000; Moczo
et al. 2002), convolution differentiator methods (Zhou & Green-
halgh 1992; Mora 1986; Etgen 1987; Yomogida & Etgen 1993),
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spectral element methods (Komatitsch & Tromp 2002; Komatitsch
& Vilotte 1998) and finite volume methods (Dormy & Tarantola
1995). Each of these methods has its merits and drawbacks. For
spatial discretizations, a powerfully spatial derivative operator is
one of keys to solve wave equations for strongly heterogeneous
media. Most effort has been focused on developing either global
methods (Fornberg 1990; Chen 1996; Zhao et al. 2003) or local-
ized methods (Bayliss et al. 1986; Mora 1986; Etgen 1987; Holberg
1987; Zhou & Greenhalgh 1992; Yomogida & Etgen 1993; Levan-
der 1988; Komatitsch & Vilotte 1998; Geller & Takeuchi 1998;
Takeuchi & Geller 2000; Moczo et al. 2002; Komatitsch & Tromp
2002; Yang et al. 2004) for solving partial differential equations.
Generally, the local methods (e.g. methods of finite difference, fi-
nite volumes and finite elements) are highly localized in the spatial
domain, yet delocalized in their spectral domain; global methods,
such as the Fourier spectral method, are highly localized in their
spectral representations and delocalized in the spatial domain. As
a consequence, global methods appear to be more accurate than
local methods when they are used to approximate spatial deriva-
tives of a smooth function. The main advantage of local methods
is their flexibility for satisfying special boundary conditions and
for treating complex geometries. In this paper, we elect a discrete
singular convolution differentiator (DSCD) with optimization and
truncation for spatial discretizations of wave equations. This differ-
entiator can be considered as a localized operator, though mathe-
matical analysis (Qian 2003) indicates that the regularized Shannon
delta kernel is a local spectral kernel. Numerical analysis (Feng &
Wei 2002; Sun & Zhou 2006 ) indicates that the discrete singular
convolution scheme can be more accurate than global methods (e.g.
the Fourier pseudospectral methods) for treating non-bandlimited
problems and for treating complex geometries (e.g. approximat-
ing spatial derivatives of discontinuous functions), even if it is not
as accurate as global methods for approximating bandlimited peri-
odic functions or for approximating spatial derivatives of smooth
functions.

So far structure-preserving modelling methods for elastic wave
equations are infrequent, but the sort of numerical method is re-
quired for high-precision seismic modelling, especially for long-
time simulations of seismic wave propagation. Although the con-
cept of the symplectic convolution differentiator seems not to
be very new mathematically, it could be used to develop a new
structure-preserving scheme for elastic wave equations modelling
and any reference on similar research has not been found by
far.

In this paper, we present a new method for accurately and effi-
ciently modelling elastic wavefields and for long-time simulations
of seismic wave propagation using a symplectic DSCD (SDSCD)
algorithm. Here, a truncated and optimized DSCD is used for spatial
discretizations. Theoretically, the DSCD is a localized operator that
can both describe the fine structure of wavefields in complex media
and avoid any non-causal interaction of the propagating wavefields
when parameter discontinuities are present in the medium. The oper-
ator is truncated for practical implementation. Nine-point operators
on regular grids are used as a compromise between computational
efficiency and accuracy. To improve the capability of seismic mod-
elling methods for long-time simulations, we substitute the third-
order partitioned Runge–Kutta scheme (a symplectic algorithm) for
traditional finite difference scheme in temporal discretizations. In
numerical experiments described by this paper, we apply the SD-
SCD to elastic wavefield modelling in heterogeneous media and to
long-time simulations of elastic wave propagating. Our numerical

results indicate that the SDSCD is suitable for large-scale numerical
modelling since it effectively suppresses numerical dispersion by
discretizing the elastic wave equations when coarse grids are used.
The numerical results also confirm that the SDSCD presented in this
paper has the superior performance to solve long-time simulation
problems.

T H E O R E T I C A L M E T H O D

Discrete singular convolution differentiator

In recent years, a DSCD for solving partial differential equations
has been developed (Feng & Wei 2002; Sun & Zhou 2006). The
differentiator can use optimization and truncation to form a lo-
calized operator. This is a high-precision and efficient operator to
solve partial differential equations. In this paper, the DSCD will be
elected for spatial differentiation. Here, we begin by summarizing
the DSCD for the spatial derivative to solve wave equations. Let T
(x − t) be a singular kernel and η(x) be an element of the space of
test function. A singular convolution is defined as

f (x) = (T ∗ η)(x) =
∫ ∞

−∞
T (x − t)η(t) dt . (1)

Here, singular kernels of the delta type are required

T (x) = δ(q)(x), (q = 0, 1, 2, . . .). (2)

The singular kernel is T (x) = δ(x) of particular importance
for interpolation of surfaces and curves. Higher-order kernels,
T (x) = δ(q)(x), (q = 0, 1, 2, . . .) are essential for numerically solv-
ing partial differential equations. However, one has to find appro-
priate approximations to the above singular kernel, which cannot be
directly realized in computers. Finally, a sequence of approxima-
tions is considered as

lim
α→α0

δ(q)
α (x) = δ(q)(x), q = 0, 1, 2, . . . , (3)

where α is a parameter which characterizes the approximation with
the α0 being a generalized limit. Among various approximation
kernels, regularized Shannon delta kernel (Gottlieb et al. 1981 ) is
an excellent candidate. It can be written as

δσ,�(x) = sin π

�
x

π

�
x

exp

(
− x2

2σ 2

)
. (4)

In this formula, � is the grid spacing and σ determines the width
of the Gaussian envelop. For a given σ �= 0, the limit of � →
0 reproduces the delta kernel (distribution). With the regularized
Shannon kernel, a function u and its nth order derivative can be
approximated by a discrete convolution

u(q)(x) ≈
�x	+W∑

k=�x	−W

δ
(q)
σ,�(x − xk)u(xk), q = 0, 1, 2, . . ., (5)

where �x	 denotes the gridpoint that is closest to x, and 2W + 1
is the computational bandwidth, or effective kernel support, which
is usually smaller than the computational bandwidth of the spectral
method, that is, the entire domain span. Generally, a larger W will
lead to a higher accuracy. When q = 1, the fist order derivative d1(x)
can be discretized as

d1(k�x) =
{

δ′
σ,�(k�x) k = ±1, ±2, . . . , ±W

0 k = 0
, (6)
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where �x is the grid spacing. For practical implementation, the
differentiator has to be truncated as a short operator, but doing
so could lead to the Gibbs phenomenon. To avoid the Gibbs phe-
nomenon, we use a Hanning window function for truncating the
differentiator:

w(k) =
[

2α − 1 + 2(1 − α) cos2 kπ

2(W + 2)

] β
2

,

k = 0, ±1, ±2, . . . , W. (7)

The constants α(0.5≤ α ≤ 1) and β allow a family of different
windows to be considered. A modified and practical convolutional
differentiator can be denoted by

d̂1(k�x) =
{

d1(i�x)w(i) i = ±1, ±2, . . . , ±W

0 i = 0
. (8)

From the discrete Fourier analysis of the discrete singular con-
volution (Feng & Wei 2002; Yang et al. 2002), it can be found
the accuracy of the operator clearly depends on its length. The
error analysis also indicates that the accuracy of the discrete
singular convolution approximation to the derivative is control-
lable and can be better than the traditional higher-order finite
difference approximation. To obtain an optimal balance between
computational efficiency and accuracy of the discrete singular
convolution approach, we chose nine-point explicit operators on
regular grids via the discrete Fourier analysis. The nine-point ex-
plicit operator (DSCD) used in this paper is accurate eighth-order
in space.

A symplectic scheme of temporal discretization for the
elastic wave equations

For a 2-D isotropic elastic medium, the first-order velocity–stress
hyperbolic system of elastic wave equations (Virieux 1986) can be
written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∂vx
∂t = ∂σxx

∂x + ∂σxz
∂z + fx ,

ρ
∂vz
∂t = ∂σzx

∂x + ∂σzz
∂z + fz,

∂σxx
∂t = (λ + 2μ) ∂vx

∂x + λ
∂vz
∂z ,

∂σzz
∂t = λ ∂vx

∂x + (λ + 2μ) ∂vz
∂z ,

∂σxz
∂t = μ∂vx

∂z + μ
∂vz
∂x ,

∂σzx
∂t = μ∂vx

∂z + μ
∂vz
∂x ,

. (9)

where vx and vz are the velocity components of the x and z directions,
σxx , σzz and σxz are the stress components, fx and fz are the body
forces, λ and μ are the elastic parameters and ρ is the density. We
write eq. (9) as the following matrix for easy expressing:

d

dt

⎛
⎝ v

σ

⎞
⎠ = (P + Q)

(
v

σ

)
, (10)

where v = (vx , vz)T , σ = (σxx , σzz, σxz, σzx )T

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1
ρ

∂ ∂x 0 1
ρ

∂

∂z 0

0 0 0 1
ρ

∂

∂z 0 1
ρ

∂

∂x

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

(λ + 2μ) ∂

∂x λ ∂

∂z 0 0 0 0

λ ∂

∂x
(λ + 2μ) ∂

∂z 0 0 0 0

μ ∂

∂z μ ∂

∂x 0 0 0 0

μ ∂

∂z μ ∂

∂x 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For the time variable t, the solution of eq. (10) is⎛
⎝ v(t)

σ (t)

⎞
⎠ = exp[t(P + Q)]

(
v(0)

σ (0)

)
, (11)

where v(0) = v(t)|t=0, σ (0) = σ (t)|t=0.
When real numbers ci , di , i = 1, · · · , k exist,

exp(t P) exp(t Q) =
k∏

i=1

exp(ci t P) exp(di t Q) + O(tm+1) (12)

is true. Because exp(ci t P) and exp(di t Q) are symplectic transfor-
mations (Chen & Qin 2000), kth-stage symplectic scheme with
mth-order accuracy of eq. (11) can be obtained⎛
⎝ v

σ

⎞
⎠ (t) =

k∏
i=1

exp(ci t P) exp(di t Q)

⎛
⎝ v

σ

⎞
⎠ (t) + O(tm+1). (13)

Here we call the real numbers in eq. (13) as symplecticity coef-
ficients.

By the temporal discretization and Taylor expansion, the discrete
scheme of eq. (13) can be denoted by⎛
⎝ v(n+1)

σ (n+1)

⎞
⎠ =

k∏
i=1

(I + ci�t P) (I + di�t Q)

(
v(n)

σ (n)

)
, (14)

where n is the index along the time axis, �t is sampling rate along
the time axis, i is the stage index of scheme (14). Because the
temporal errors of eq. (13) is O(tm+1), the temporal accuracy of eq.
(14) is mth-order. Adopting methods which were given by Suzuki
(1992) and Yoshida (1990) to eq. (14), the symplecticity coefficients
for k = m = 3 are

c1 = 1

12

(√
209

2
− 7

)
, c2 = 11

12
, c3 = 1

12

(
8 −

√
209

2

)
,

d1 = 2

9

(
1 +

√
38

11

)
, d2 = 2

9

(
1 −

√
38

11

)
, d3 = 5

9
,

and eq. (14) can be written as⎛
⎝ v(n+1)

σ (n+1)

⎞
⎠ =

3∏
i=1

(I + ci�t P)(I + di�t Q)

(
v(n)

σ (n)

)
. (15)
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The displacement can be written as

u(n+1) = �tv(n+1) + u(n), u(n) = (
u(n)

x , u(n)
z

)
, (16)

where ux and uz are the displacement components of the x and z
directions.

The above-mentioned coefficients (ci and di) are identical with the
solution of the symplecticity condition equations given by Iwatsu
(2009) for a third-order symplectic integration method. Eq. (15)
is a three-stage third-order explicit symplectic scheme for elastic
wave equation modelling. The spatial derivatives in eq. (15) are
calculated by the use of the DSCD (eq. 8). Iwatsu (2009) analysed
computational precision and stability of the third-order symplectic
temporal discretization scheme in detail. From his analysis, it can
be seen that the above-mentioned temporal discretization scheme is
far superior to non-symplectic temporal discretization schemes in
computational precision and stability.

A C C U R A C Y A N D S TA B I L I T Y
C O N D I T I O N

Previous works generally evaluated the proposed computational
schemes by presenting theoretical derivations or by conducting nu-
merical tests for a homogeneous medium, using the numerical dis-
persion of the phase velocity as the criterion for evaluating accuracy.
For SDSCD velocity-stress scheme, however, it is hard to obtain an
explicit scheme for the grid-dispersion relations and its derivation
is lengthy. Therefore, we use the following analyses of errors and
waveform comparison to test the accuracy of numerical results, and
the explicit scheme for the grid-dispersion relations will be given
in a separate study.

To test the accuracy of numerical results from SDSCD (eqs 14, 15
and 16), the root-mean-square (rms) deviation E from the analytical
solution given by De Hoop (1960) in a homogeneous space (Fig. 1)
used for quantitative measurement of the numerical accuracy is
defined as

Ek =
⎧⎨
⎩ 1

M N

M∑
i=1

N∑
j=1

[
kun

i, j − uk(tn, xi , z j )
]2

⎫⎬
⎭

1/2

, k = x, z,
(17)

where kun
i, j , k = x, z denotes x or z component of the numerical

displacement at gridpoint (xi , z j ) and at time tn , and uk(tn, xi , z j )
denotes x or z component of the analytical displacement at the same
gridpoint and at the same time. For the rms error measurement, we
set M = N = 50 which are the total grid numbers in the x and z
directions. In the numerical calculation, the model parameter are a
P-wave velocity of VP = 3000 m s−1, a S-wave velocity of VS =
2000 m s−1 and a density of ρ = 2000 kg m−3. The number of
gridpoints is 256 × 256, the model size is 2550 m × 2550 m, and

Figure 1. 2-D homogeneous medium model: configuration and parameters.

Figure 2. The errors of the SDSCD measured by the rms deviation E for
the horizontal displacements.

the receiver is located at (xr, zr) = (1600 m, −800 m). The spatial
increments were 10 m and the time increment is 1 ms. An explosive
source is located at (xs, z s) = (2550 m, 2550 m), which is a Ricker
wavelet and can be written as

fx = fz = f (t)δ(x − xs, z − zs), (18)

where f (t) = {1 − 2[π f0(t − t0)]2} exp{−[π f0(t − t0)]2}, f 0 is the
dominant frequency and t0 is starting time. This is a medium model
without any type of absorbing or transmitted boundary conditions.

Fig. 2 displays the computational results of the rms deviation E
for the horizontal displacement generated by the SDSCD at different
times and different dominant frequencies (20 and 30 Hz). The curves
of the rms error indicates that the error introduced by the SDSCD
measured by E decreases slightly with increasing of the dominant
frequency f 0. Because the nine-point SDSCD selected in this paper
is accurate eighth-order in space, we here compare it with the eighth-
order FD operator. Fig. 3 shows the curves of the rms error at the
dominant frequency of f 0 = 30 Hz for the nine-point SDSCD and
for the eighth-order FD operator. From Fig. 3, it is found that the

Figure 3. The errors of the SDSCD and the eighth-order FD operator mea-
sured by the rms deviation E for the vertical component. The explosive
source fx = fz = f (t)δ(x −xs, z−zs) of Ricker wavelet with a frequency f 0 =
30 Hz is located at point (1600 m, −800 m).
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Figure 4. Comparison between the analytical displacements and numerical
displacements generated by SDSCD. The explosive source fx = fz = f (t)
δ(x − xs, z − zs) of Ricker wavelet with a frequency f 0 = 25 Hz is located at
point (1600 m, −800 m). Panel (a) is a display for the horizontal components
of the particle displacements, and panel (b) shows the vertical components
of the particle displacements.

error of the nine-point SDSCD is less than that of the eighth-order
FD operator. In average, the average error of the nine-point SDSCD
is about 38.8 per cent of that of the eighth-order FD operator for
short-time computations. More intuitively, a comparison between
the analytical and numerical horizontal displacements at point (1600
m, −800 m) for the dominant frequency of f 0 = 25 Hz is shown
in Fig. 4. It is found that the curves for the numerical solutions
obtained by the nine-point SDSCD almost superimpos upon the
curves for the analytical solutions.

Because it is very difficult to give an explicit treating for stability
of the SDSCD velocity-stress scheme, the further theoretical stabil-
ity condition will be analysed in a separate study. We here evaluate
the stability using the Courant number r = Vmax�t/�h. Here V max

is the maximum value of P-wave velocity,�h = �x = �z. For the
above homogeneous medium (Fig. 1), the stability condition or the
stability limit of eq. (16) is

�t ≤ 0.684�h/Vp or maximum Courant number
rmax = �tVp/�h ≤ 0.684.

Maximum Courant number is a most common numerical sta-
bility condition. In the above-mentioned calculation of maximum
Courant number, the model parameters are a P-wave velocity of
VP = 3000 m s−1, a S-wave velocity of VS = 2000 m s−1. a density
of ρ = 2000 kg m−3, a spatial increment of �h = 10 m and a
maximum time increment of �t = 2.28 ms.

Theoretically, the SDSCD approach is equivalent to an optimized
FD method. Because of the use of eq. (15) and that of the nine-
point SCD, the SDSCD approach is accurate third-order in time and
eighth-order in space.

N U M E R I C A L E X P E R I M E N T S

Generally, the performance of numerical schemes is evaluated by
considering the numerical dispersion as a function of number of
gridpoints per wavelength. Even though the wave field in a highly
heterogeneous medium is usually not known analytically, the overall
performance can still be judged qualitatively. In this section, two
numerical examples are given for evaluating the performance of the
SDSCD approach.

The Fourier pseudospectral scheme is one of the most widely
used methods, which is a high-precision scheme for treating un-
complicated geometries. We compared the numerical results found
using SDSCD with those from Fourier pseudospectral scheme for a
lateral heterogeneous medium with a high physical parameter con-
trast. The model consists of two different wave velocity regions
separated by a rough curved interface (Fig. 5). The model parame-
ters were a P-wave velocity of VP1 = 2500 m s–1, a S-wave velocity
of VS1 = 1443 m s−1 and a density of ρ1 = 2000 kg m−3 for
the upper layer with the pressure source, and a P-wave velocity of
VP2 = 4500 m s−1, a S wave velocity of VS2 = 2589 m s−1 and a
density of ρ2 = 2600 kg m−3 for the lower layer. The number of
gridpoints was 256 × 256, the model size was 2550 m × 2550 m,
and the wave source was located at point (xs, zs) = (1280 m, −
1180 m). The receiver was located at point (xr, zr) = (1280 m,
−1030 m). The spatial increments were 10 m and the time incre-
ment was 1 ms. The interface can be considered a velocity dis-
continuity since the velocity contrast is very high. The explosive
source, a Ricker wavelet (it can be written as eq. 18), is located in
the upper layer and has an amplitude spectrum peak at 30 Hz. To
reduce the artificial reflections that are introduced by the edge of the
computational grid, the non-reflecting boundary condition (Cerjan
et al. 1985) was applied to the sides and bottom of the medium
model.

Fig. 6(a) is elastic wavefield (vertical component) snapshots at
time mark of 400 ms generated by the SDSCD. The snapshots in
Figs 6(a) and (b) (generated by the Fourier pseudospectral scheme)
clearly show the wave front of the direct P wave and other phases
(e.g. the reflected P–P and P–S wave fronts, transmitted P and P–S
wave fronts and scattered waves from the rough curved interface).
The wave fronts are continuous and mend the physical parameter
discontinuity in the model. From these snapshots, it can be seen
that the wavefields simulated by SDSCD are very clear. There is
hardly any grid dispersion despite the fact that there are only 4.81
grids or less per shortest wavelength at the dominant frequency
(30 Hz). A similar phenomenon also appears when comparing the
synthetic seismograms (Fig. 7a for the SDSCD and Fig. 7b for the
Fourier pseudospectral scheme). The above-mentioned comparison
indicates that the SDSCD scheme is as accurate as the Fourier
pseudospectral scheme for short-time simulations and for treating
uncomplicated geometries. Like the Fourier pseudospectral scheme,
the SDSCD is suitable for large-scale numerical modelling with
coarse spatial grids.

Based on these results, we conclude that the convolutional opera-
tor designed here is accurate to about 4.81 grids or less per shortest
wavelength. Also, the SDSCD method effectively captures the inner
interface without any special treatment at the discontinuity.

C© 2012 The Authors, GJI, 188, 1382–1392
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Figure 5. Lateral heterogeneous medium model: configuration and parameters.

Figure 6. Snapshots of elastic wavefields (vertical component) in a lateral heterogeneous medium model at time 400 ms generated by SDSCD (a) and the
Fourier pseudospectral method (b).
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Figure 7. Comparison of synthetic seismograms (vertical component) for
a lateral heterogeneous medium model generated by the SDSCD (a) and the
Fourier pseudospectral method (b).

We now consider a more complex case consisting of the Mar-
mousi model (Fig. 8). It is such a representative model (Versteeg
1993) that can be used to describe strongly heterogeneous media
including continuous and discontinuous parameter changes. In the

model, it is supposed that the S-wave velocity structure ranges from
1500 to 5500 m s−1 and the P-wave velocity of VP = √

3VS . The
number of gridpoints is 384 × 122, the model size was 7680 m ×
2440 m, and the pressure source was located at (xs, zs) = (3840
m, −200 m), which is a Ricker wavelet (eq. 18) with an amplitude
spectrum peak at 25 Hz. The spatial increment is 20 m and the time
increment was 2 ms.

Figs 9(a) and (b) are snapshots of elastic wavefields for the ver-
tical component at time marks of 400 ms generated by the SDSCD
and by the Fourier pseudospectral scheme, respectively. Compar-
ing the numerical results, it can be found that there is hardly any
evidence of numerical dispersion in the SDSCD approach just as
in the Fourier pseudospectral scheme. The above-mentioned com-
parison indicates that the SDSCD is likewise efficient in strongly
heterogeneous media.

To test the long-time performance of the SDSCD scheme,
we compared the numerical results computed by SDSCD with
those from Fourier pseudospectral scheme for a 2-D homogeneous
medium model. The model parameter were a P-wave velocity of
VP = 3000 m s−1, a S-wave velocity of VS = 1732 m s−1 and a
density of ρ = 2400 kg m−3. The number of gridpoints was 256 ×
256, the model size was 5100 m × 5100 m, and the pressure source
was located at (xs, zs) = (2550 m, 2550 m), which was a Ricker
wavelet (see eq. 18) with an amplitude spectrum peak at 30 Hz. The
spatial increments were 20 m and the time increment was 2 ms. This
was a medium model without any type of absorbing or transmitted
boundary conditions.

Figs 10(a)–(c) show elastic wavefield (vertical component) snap-
shots generated by the SDSCD scheme after 400, 2000 and 5000
time steps, respectively. Similarly, Figs 10(d)–(f) display elas-
tic wavefield snapshots generated by the Fourier pseudospectral
scheme after 400, 2000 and 5000 time steps, respectively. From
Figs 10(a) and (d), it can be found that the wave front curves gen-
erated by the two schemes after 400 time steps are quite clear. For
short-time numerical simulations, therefore, they have similar per-
formance in the same case. For long-time numerical simulations,
however, the aforementioned two schemes perform quite differently
and have different error growth. After 2000 times steps (4000 ms), it
can be observed that the SDSCD scheme has slightly numerical dis-
persion, whereas the Fourier pseudospectral scheme suffers obvious
numerical dispersion. The CPU (Core 2 Duo 2.53 GHz) time for the
SDSCD scheme and the Fourier pseudospectral scheme is 672.25
and 299.83 s, respectively. Although the CPU time required by the
Fourier pseudospectral scheme is less than that required by the SD-
SCD scheme, the Fourier pseudospectral scheme suffers obvious
numerical dispersion. On a fine grid (�x = �z = 10 m, �t = 1 ms),
the CPU time required by the Fourier pseudospectral scheme soars

Figure 8. Marmousi model: configuration.
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Figure 9. Snapshots of elastic wavefield for the vertical component in the Marmousi model at time marks of 400 ms generated by the SDSCD (a) and the
Fourier pseudospectral scheme (b).

to 3435.03 s and numerical dispersion reduces markedly (Fig. 10g).
Under the same condition of eliminating the numerical dispersion,
computational CPU time of the SDSCD scheme is about 19.57 per
cent of that of the Fourier pseudospectral scheme and computer
memory required by the SDSCD scheme is about 25 per cent of
that required by the Fourier pseudospectral scheme. After 5000
time steps, the wave front curves computed by the SDSCD scheme
are still clearly seen. At this time, however, the wave front curves
computed by the Fourier pseudospectral scheme have blurred seri-
ously. This comparison indicates that the two schemes perform very
differently for long-time computation, and the SDSCD scheme is
very suitable for long-time simulation. The comparison also indi-
cates that the computational efficiency of the SDSCD scheme is
superior to that of the Fourier pseudospectral scheme for long-time
simulation and the SDSCD can greatly save both computational
CPU time and computer memory via using the coarse spatial and
large time steps.

C O N C LU S I O N S

In this paper, an alternative method for structure-preserving mod-
elling of elastic waves has been presented, which is based on a third-
order SDSCD scheme. For temporal discretizations, the SDSCD
method is a structure-preserving scheme. Theoretically, it can be
applied to long-time simulations. For spatial discretizations, nine-
point operators on regular grids are designed for optimizing the

computational efficiency and accuracy of the presented approach.
The nine-point SDSCD is a localized operator that can describe
the local properties of complicated wavefields and avoid non-causal
interaction of the propagating wavefield when parameter disconti-
nuities are present in the medium. This approach is therefore suit-
able for large-scale numerical modelling since it effectively sup-
presses numerical dispersion by discretizing the wave equations
when coarse grids are used. Because the SDSCD approach is equiv-
alent to an optimized FD method in nature, it is suitable to any type
of absorbing or transmitted boundary condition that is suitable for
conventional FD methods. Although the approach presented is only
applied to the 2-D elastic wavefield calculation for heterogeneous
models and to long time simulation of the 2-D elastic wavefield
in this paper, it can be readily extended to 3-D elastic wavefield
calculations.

From the simulation results in this paper, it has been shown
that the SDSCD method can effectively capture the inner interface
without any special treatment at the discontinuity; therefore, it can
simulate seismic waves in complicated geometries and highly het-
erogeneous media without any additional treatment. The SDSCD
allows us to use a coarse grid, that is, fewer samples per wavelength,
to achieve the same accuracy in modelling waves and is similar to
that obtained by conventional FD schemes on a finely sampled grid.
As a result, the SDSCD can greatly save both computational CPU
time and computer memory via using the coarse spatial and large
time steps. The numerical experiments also demonstrate the re-
markable ability of the SDSCD for long-time simulation of elastic

C© 2012 The Authors, GJI, 188, 1382–1392
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Figure 10. Snapshots of elastic wavefields (vertical component) in a 2-D homogeneous medium model generated by SDSCD after (a) 400 time steps, (b) 2000
time steps (4 s) and (c) 5000 time steps. Snapshots of elastic wavefields in the same medium model generated by the Fourier pseudospectral method after (d)
400 time steps, (e) 2000 time steps, (f) 5000 time steps and (g) 4 s (for �x = �z = 10 m, �t = 1 ms).
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Figure 10. (Continued.)

equations. The results here hold promise not only for future seismic
wave studies, but also for any geophysical research that requires
structure-preserving numerical solution (or long-time simulations)
of partial differential equation with variable coefficients. Although
the concept of the SDSCD seems not to be very new mathematically,
a structure-preserving solution of elastic wave equations is obtained
by using the SDSCD presented by this paper and it is very suitable
for high-precision modelling of elastic wavefield, especially for its
long-time simulations. This is exactly what new meaning of this
paper is about. So far no reference on similar research has been
found.
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