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Three-Dimensional Wave-Field Simulation in Heterogeneous

Transversely Isotropic Medium with Irregular Free Surface

by Haigiang Lan and Zhongjie Zhang

Abstract Modeling of seismic-wave propagation in anisotropic medium with
irregular topography is beneficial to interpret seismic data acquired by active and pas-
sive source seismology conducted in areas of interest such as mountain ranges and
basins. The major challenge in this context is the difficulty in tackling the irregular
free-surface boundary condition in a Cartesian coordinate system. To implement sur-
face topography, we use the boundary-conforming grid and map a rectangular grid onto
a curved grid. We use a stable and explicit second-order accurate finite-difference
scheme to discretize the elastic wave equations (in a curvilinear coordinate system)
in a 3D heterogeneous transversely isotropic medium. The free-surface boundary con-
ditions are accurately applied by introducing a discretization that uses boundary-
modified difference operators for the mixed derivatives in the governing equations.
The accuracy of the proposed method is checked by comparing the numerical results
obtained by the trial algorithm with the analytical solutions of the Lamb’s problem, for
an isotropic medium and a transversely isotropic medium with a vertical symmetry axis,
respectively. Efficiency tests performed by different numerical experiments illustrate
clearly the influence of an irregular (nonflat) free surface on seismic-wave propagation.

Introduction

Rough topography is very common and we have to deal
with it during the acquisition, processing, and interpreta-
tion of seismic data. For example, in the context of the deep
seismic soundings to explore the crustal structure, seismic
experiments are usually carried out across: (1) orogenic belts
for understanding the mechanisms; (2) basins to understand
the formation mechanisms; and (3) transition zones for the
study of its interaction (Boore, 1972; Jih ef al., 1988; Levan-
der, 1990; Al-Shukri et al., 1995; Robertsson, 1996; Ashford
et al., 1997; Robertsson and Holliger, 1997; Zhang and
Klemperer, 2010; Zhang et al., 2010). In oil/gas seismic
exploration, seismologists also have a similar problem with
the undulating topography along the survey line.

In the last two decades, several approaches have been
proposed to simulate wave propagation in heterogeneous
medium with irregular topography. These schemes include
the finite-element method (Rial er al., 1992; Toshinawa
and Ohmachi, 1992); the spectral element method (Koma-
titsch and Vilotte, 1998; Komatitsch and Tromp, 1999, 2002);
the pseudospectral method (Tessmer ez al., 1992; Tessmer and
Kosloff, 1994; Nielsen et al., 1994); the boundary element
method (Campillo and Bouchon, 1985; Sdnchez-Sesma et al.,
1985; Campillo, 1987; Bouchon et al., 1989; Sanchez-Sesma
and Campillo, 1991, 1993; Durand et al., 1999; Liu and
Zhang, 2001; Sanchez-Sesma et al, 1993; Liu et al,
2008); the finite-difference method (Wong, 1982; Jih et al.,

1988; Frankel and Vidale, 1992; Frankel, 1993; Hestholm
and Ruud, 1994; Robertsson, 1996; Robertsson and Holliger,
1997; Hestholm and Ruud, 1998; Hestholm et al., 1999;
Oprsal and Zahradnik, 1999; Hayashi et al., 2001; Hestholm,
2003; Gao and Zhang, 2006; W. Zhang and X. Chen, 2006;
Lombard et al., 2008), and also a hybrid approach that com-
bines the staggered-grid finite-difference scheme with the
finite-element method (Moczo et al., 1997; Galis et al.,
2008). Both the spectral element and the finite-element meth-
ods satisfy boundary conditions on the free surface naturally.
Three-dimensional surface and interface topographies can be
modeled using curved piecewise elements. However, the
classical finite-element method suffers from a high computa-
tional cost, and, on the other hand, a smaller spectral element
than the one required by numerical dispersion is required to
describe a highly curved topography, as demonstrated in seis-
mic modeling of a hemispherical crater (Komatitsch and
Tromp, 1999). The pseudospectral method is limited to a free
surface with smoothly varying topography and leads to inac-
curacies for models with strong heterogeneity or sharp bound-
aries (Tessmer et al., 1992). The boundary integral equation
and boundary element methods are not suitable for near-
surface regions with large velocity contrasts (Bouchon et al.,
1995). The finite-difference method is one of the most popular
numerical methods used in computational seismology. In
comparison with other methods, the finite-difference method
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is simpler and more flexible, although it has some difficulty in
dealing with surface topography. The situation has improved
recently. For rectangular domains, a stable and explicit discre-
tization of the free-surface boundary conditions has been pre-
sented by Nilsson ez al. (2007). By using boundary-modified
difference operators, Nilsson et al. (2007) introduce a discre-
tization of the mixed derivatives in the governing equations;
they also show that the method is second-order accurate for
problems with smoothly varying material properties and
stable under standard Courant-Friedrichs-Lewy constraints,
for arbitrarily varying material properties. Subsequently,
Appelo and Petersson (2009) have generalized the results
of Nilsson et al. (2007) to curvilinear coordinate systems,
allowing for simulations on nonrectangular domains. They
construct a stable discretization of the free-surface boundary
conditions on curvilinear grids, and they prove that the
strengths of the proposed method are its ease of implementa-
tion, efficiency (relative to low-order unstructured grid meth-
ods), geometric flexibility, and, most importantly, the bullet-
proof stability (Appelo and Petersson, 2009), even though
they deal with 2D isotropic medium.

Nevertheless, the earth is often seismically anisotropic
resulting from fractured rocks, fluid-filled cracks (Hudson,
1981; Crampin, 1981, 1984; Schoenberg and Muir, 1989;
Liu et al., 1993; Hsu and Schoenberg, 1993; Zhang et al.,
1999, 2000), thin isotropic layering (Backus, 1962; Helbig,
1984), lack of and homogeneity (Grechka and McMechan,
1995), or even preferential orientation of olivine (Forsyth,
1975; Dziewonski and Anderson, 1981). In this study, we fol-
low the approach proposed by Appelo and Petersson (2009)
and extend it to the 3D case with the purpose of simulating
seismic-wave propagation in 3D heterogeneous anisotropic
medium with nonflat surface topography. The paper is orga-
nized as follows: first, we briefly describe the boundary-
conforming grid and the transformation between curvilinear
coordinates and Cartesian coordinates; then we write the wave
equations and free boundary conditions in these two coordi-
nate systems; after that we introduce a numerical method to
discretize both the wave equations and the free-surface bound-
ary conditions. Finally, we present several numerical exam-
ples to demonstrate the accuracy and efficiency of the method.

Transformation between Curvilinear
and Cartesian Coordinates

As to the topographic surface, the discrete grid must con-
form to the free surface to suppress artificial scattered waves.
Such a grid is called the boundary-conforming grid (Thomp-
son et al., 1985; Hvid, 1994); it was used early by Fornberg
(1988) in seismic-wave simulation with the pseudospectral
method. A grid of this type is achieved by carrying out a trans-
formation between the (curvilinear) computational space and
the (Cartesian) physical space as illustrated in Figure 1. By
means of this transformation, the curvilinear coordinates ¢,
r, and s are mapped into Cartesian coordinates within the
physical space, where both systems have positive direction
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Figure 1. Mapping between computational and physical space
in three dimensions (after Hvid, 1994).

downward for the vertical coordinate. A boundary in the phys-
ical space presents a constant value of one of the curvilinear
coordinates, be it a curve in two dimensions or a surface in
three dimensions.

Boundary-conforming grids may be of two funda-
mentally different types: structured and unstructured (or
irregular) grids. A structured grid (Fig. 1) is characterized
by having a fixed number of elements along each of the
coordinate directions. The general element is a hexahedron
in 3D, just as in the left panel of Figure 1. Neighboring ele-
ments in the physical space are also adjacent in the computa-
tional space, which is one of the great advantages of this type
of grid. This property makes it relatively simple to implement
in a computer. Structured grids are mainly used in finite dif-
ference and finite volume solvers. In this paper we focus on
structured boundary-conforming grids. Several methods may
be used to generate these grids, namely: Partial Differential
Equation (PDE) methods, algebraic methods, co-normal
mapping methods, and variational methods. Here we use
PDE methods (see Thompson et al., 1985 and Hvid, 1994
for details).

After generating the boundary-conforming grid, the
Cartesian coordinates of every grid point can be determined
from the curvilinear coordinates through the equation

x =x(q,r,s), (1a)
y=y(q,1,5), (1b)
z=2(q,r,s), (1c)

then, we can express the spatial derivatives in the Cartesian
coordinate system (x,y,z) from the curvilinear coordinate
system (g, r, s) following the chain rule

Oy = q, 0y + 10, + 5,0;, (2a)
Oy = q,0, + ry0, + 5,0;, (2b)
81 = QZaq + rzar + szas’ (2C)

and similarly in other cases
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0y = x40, + y,0, + 7,0, (3a)
0, = x,0, + 1,0, + 2,0, (3b)
0 = x,0; + ysay + Zsazv (3C)

where ¢, denotes Jq(x,y,z)/0x and the similar in other
cases. These derivatives are called metric derivatives or
simply the metric. We can also find the metric derivatives

1

qx = j (yrzs - Zrys)7 (4a)
1

qy = j (ers - xrzs)v (4b)
1

q; = j (xryx - yrxs)’ (40)
1

Iy = j(yszq _Zsyq)’ (4d)
1

=5 (25X, — X,24), (4e)
1

Ty :7(xsyq_ysxq)v (4f)
1

Sx = j (yqzr - qur)» (4g)
1

sy =5 (g% = X42), (4h)
1 .

S, = j (-qur - yqxr)v (41)

where J is the Jacobian of the transformation that is
written as

J = qurzs - quxzr - xryqzx

+ xryszq + xsyqzr - xsyrch
and whose detailed form can be found in Appendix A.

It is worth noting that even if the mapping equation (1) is
given by an analytic function, the derivatives should still be
calculated numerically to avoid spurious source terms due to
the coefficients of the derivatives when the conservation
form of the momentum equations are used (Thompson et al.,
1985). In all examples presented in this paper the metric
derivatives are computed numerically using second-order
accurate finite-difference approximations.
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Elastic Wave Equations in Cartesian and Curvilinear
Coordinate Systems

In the following paragraphs we consider a well-studied
type of anisotropy in seismology, namely, a transversely iso-
tropic medium. In the absence of external force, the elastic
wave equations in the Cartesian coordinates are given by

0%u 8( Ou ov 8W) 8( Ou
11

PR = ox E+C128_y+cl38_z +8_y Cssa—y
+ Ov +2 @Jr Ow (5a)
“oox) T\ Moz T Max )

Po_0( v owy o( oo
Por = ax \“ oy Cﬁéay Oy C”By 1255
ow 0 ov ow

+c3 ('92) +8z(c448z+ C44ay), (5b)

Pw_0( e, o0y 00 w0
Par T ax\“Max T “o; ay\ ™Moy T Mo

+2 c 8—W+c @—i-c ov (5¢)
o2\ B, Tngy Ty )

where ¢;;(x,y,z) are elastic parameters and cg =
0.5(¢y; — ¢12); u, v, and w are the displacements in x, y, and
z directions, respectively; p(x,y,z) is density. Equa-
tions (5a)—(5¢c) are complemented by the initial data

u(x,y,z,0) = uy(x,y, z), (6a)
v(x,y,2,0) = vo(x, y,2), (6b)
w(x,y,z,0) = wo(x, y,2), (6¢)
Ou(x,y,z,0
LD o) (60
ov(x,y,z,0
HELLD (0, (6°)
ow(x,y,z,0
% = Wl(x9 Y, Z)' (6f)

Utilizing relationships (2a)—(2c), the wave equa-
tions (5a)—(5¢) can be rewritten in the curvilinear coordinate
system in the following form (see Appendix B for details):
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Por

Jp

&%v

Pw

o

0
8_q{JQx[cll(qxaq + rxar + Sxas)u + ClZ(anq + ryar + syav)v + Cl3(qzaq + rzar + Szas)w]

+ Jqylce6(q:0y + 7.0, + 5,0,)0 + co6(q, 0y + 1,0, + 5,05)u]
+ JQZ[C44(qzaq + rzar + szas)u + c44(£1x8q + rxar + sxas)w]}

0
+ E{er[cll(QXaq + rxar + Sxas)u + ClZ(qyaq + ryar + Syas)v + C13(qzaq + rzar + Szas)w]

+ er[c()é(('Ixaq + rxar + Sxas)v + C66(anq + ryar + Syas)u]
+ Jr[cas(q. 0y + 1.0, + 5,0)u + cau(q 0y + 1,0, + 5, 0,)w]}

0
+ a{JSx[Cll(QXaq + rxar + Sxas)u + ClZ(CIyaq + ryar + Syas)” + ClS(QZ(?q + rzar + Szas)w]

+ sz[c66(qxaq + rxar + Sxas)v + C66(qyaq + ryar + Syas)u]
+ JSZ[C44(anq + rzar + Szas)u + c44(qx8q + rxar + sxas)w]}v

0
= a_q{JQ)c[c66(qxaq + rxar + Sxas)v + C66(anq + ryar + Syas)u]

+ JQy[Cll(anq + ryar + Syas)y + ch(qxaq + rxar + sxas)u + C13(anq + rzar + Szas)w]
+ JQZ[C44(QZ811 + rzar + Szas)v + C44(anq + ryar + syas)w]}

0
+ E{er[cbé(cbcaq + rxar + Sxas)v + c66(Qy8q + ryar + syas)u]
+ er[cll(anq + ryar + Syas)y + ClZ(qxaq + rxar + sxas)u + Cl3(qzaq + rzar + Szas)w]
+ Jrz[c44(qzaq + rzar + Szas)v + C44(anq + ryar + syav)w]}

0
+ a{]sx[c%(qxaq + 1,0, + 5,:0,)v + ce6(q,0, + 1,0, + 5,0,)u]

+ sz[cll(CIyaq + ryar + syas)v + ch(Qxaq + rxar + sxas)u + 613(612811 + rzar + szas)w]
+ Jsz[c44(qz6q + rzar + Szas)v + c44(qyaq + ryar + syas)w]}’

0
= %{qu[c44(qzaq + rzar + szas)u + C44(qxaq + rxar + Sxas)w]

+ JLIy[C44(qzaq + rzar + szax)” + C44(Qy8q + ryar + Syas)w]

+ qu[c33(qzaq + rzar + Szar)w + C13(q,raq + rxar + sxav)u + Cl3(qyaq + ryar + syas)v]}

0
+ E{er[c44(qzaq + rzar + Szax)u + C44(q,r8q + rxar + sxav)w]

+ er[c44(QZaq + rzar + Szas)v + C44(‘]yaq + ryar + Syas)w]

+ ‘]rz[CSB(qzaq + rzar + Szas)w + Cl3(Qxaq + rxar + sxas)u + CIS(qyaq + ryar + syas)v]}

0
+ a{Jsx[cM(CIzaq + rzar + szas)u + c44(qxaq + rxar + sxas)w]

+ sz[c44(qzaq + rzar + Szax)v + C44(qyaq + ryar + Syas)w]

+ ‘,SZ[CS3(qzaq + rzar + Szav)w + ClS(CIxaq + rxar + Sxas)u + ClS(qyaq + ryar + syas)v]}-
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Free Boundary Conditions in the Cartesian and
Curvilinear Coordinate Systems

At the free surface, the boundary conditions in the
Cartesian coordinates are given by

ol ov 0
Cligy T Cgy T Ci3g;
o 0
C66 gy T €66 gy

C44% + C44%?

Here [n,,n,,n.]" is the inward normal of the free sur-
face. Using relationships (2a)—(2c), the boundary conditions
in the curvilinear coordinates of equation (10) can be rewrit-
ten as

secri(qaug + rou, + suug) + cp(qyvg + ryo, + s,00)
+ ci3(qwy + 1w, + s,w0)]
+ Ey[c66(qyuq + ryu, + syus)
+ ce6(quvg + rev, + 5,00)]
+ 5 [can(qruy + rou, + s uy)
+ caa(qowy + 1w, + s,y
=0, (11)

5ylce6(qevg + 1oV, + 5,05) + cop(qytty + ryu, + syu,)]
+ 5yl (gyvy + ryv, + s,0)
+ cioqytty + o, + s,uy)
+ c13(gwy + row, + s.wy)]
+ 5 [cas(q.vy + 1.0, + 5,0)
+ caalqywy + ryw, + sywy)]

=0, (12)

Sileas(quwy + row, + s,w) + caalqouy + rou, + s.u))
+ 8y[caa(qywy + ryw, + sywy)
+ culq. vy + 1.0, + 5,00)]
+ 5 [exz(qwy + 1w, + s,wy)
+ c13(qaty + e, + spuy)
+ ci3(gyvy + ryv, + s,00)]
=0. (13)

Note that here the normal is represented by the normal-
ized metric (evaluated along the free surface)
Sy s

S S y
sxzi, S :77
,/s%—i—sg—i—s% ,/s%—l—s%—i—s%

i v
C66 gy T C66 Gy
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A Discretization Scheme on the Curvilinear Grid

To approximate (7)—(9) we discretize the rectangular
solid (Fig. 2)

0 Jéi
Caa g+ Can'yy n,

0 0. ow 0 0
C]]?;+Cl2aiz+613% C44%+C447¥ I’ly =0. (10)

Ow
Ca4 (aT + Ca4

0 0 0
ci3g, T Ci3ge T Cizgy | LM

gi=(G{—Dh, i=1,..N, h,=I/(N,—1),

ri=0G—=Dh, j=1,...N,, h.=w/(N,—1),

si=(k—=1Dh;,, k=1,...N;, h;=h/(N,—1),
(14)

where [, w, and & are the length of the rectangular solid in ¢,
r, and s directions, respectively; A, h,, and h; > 0 define the
grid size in g, r, and s directions, respectively. The three
components of the wave field are given by

(i k(). 0 ja (D), Wi j i (D] = [u(qis 1), 5. 1),

11(6],', TjsSk» t)sW(Qi’ FisSk» t)]s

and the derivation operators are given as

I
I I :
| | j+1
[ 7
! I L
| | k-1 I
q ) | i i1 i-1|
i+1 | | |
[ //l_____'__l___'___
: s | I
A1 I I
7
-’ I |
ad | | kL1
! L] (R
I s s
Vv A
I e e
O i
s s
s s
s s
_ _ » /
s
Figure 2.  Grids distributions in curvilinear coordinate. The free

surface is set to be at k = 1 layer, we use the forward difference
(D?%) to approximate the normal derivative in the mixed derivatives
on this layer; on other layers, the centered difference scheme (Dj)
is used.
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Uirtjk — Uijk

h, '

q _ _ q
Diu;jp = D2u;jp = Diuiy ji.

1
Diu; ;= E(Diui,j.k + D%u; j ),

r _ Hij+Lk ij.k r — Dr
Diuijp=—"—"—"""" DZu; = Dt jy .
r

D/ = ! D’ D’
oUijk = 5( Yuijr+ Dlugjg),

) Uijk+1 — Uik
D¢ T 2 5Js
+“i,j.k s

DZu;jx = Diu; i,
hy

1
Dju;jx = 5 (D%u; i+ D2u ). (15)
2

The right-hand sides of equations (7)—(9) contain spatial
derivatives of nine basic types, which are discretized accord-
ing to the following equations

3
B (aw,) ~ DZ(E‘f/z(a)Df,f_w),
9 q r 9 q(-DS
9 (bw,) =~ D{(bD}w), 9 (cwy) ~ D{(cDyw),
0 0
e (dw,) ~ Dy(dDjw), g (ew,) ~ DL(E] ,(e)Dyw),
0 ~ 0 ~
5y ws) ~ Dy(fDyw), 55 (9w ~ Dg(gDgw),
0 -
& mo) ~ Bimbi),

0
() & D (B () DS ). (16)

Ou
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Here w represents u, v, or w; a, b, ¢, d, e, f, g, m, and p
are combinations of metric and material coefficients. We in-
troduce the following averaging operators

Yijk T Vigtjk
E?/z(%‘,j,k) = Yiprjpju = 0 2 AL

Yijk T Vij+1k
Ep(Yij) = Vijr1/ok = R 3 R

s Vijk T Vijk+1
E}p(Vija) = Vijar12 = % (17)

The cross terms that contain a normal derivative on the
boundary are discretized on one side in the direction normal
to the boundary

Diuijp k=1,

D‘(Y)Mi,j'k, k22 (18)

< B
Doui,j,k = {

A Discretization on the Curvilinear Grid: Elastic
Wave Equations

We approximate the spatial operators in equations (7)—
(9) by (16). After suppressing grid indexes, this leads to

Tp's s = DALEL,(M{DDu + B (ME)DY 0 -+ Ef (I DY w] + DM By + MY Do + MY D]

+ Dy[My? Diu + M5 Do + M3 Diw] + DM Diu + M5'Div + M3 D{w]

+ DY[M3" Dyu + M3 Do + M3 Dyw] + DE[M{ Dyu + M3"Diw + MY Diw]
+ Dg[M\!Dgu + My Dgv + M5 Dgw] + D”[E} ,(M{")D" u + EY ,(M5)D’ v + Ef ;,(M5) D'y w]

+ Di[E‘i/z(M‘i‘Y)Dj_u + EE/Q(MEX)Dj_U + E‘{/Z(Mg‘Y)Diw] =L®(u,v,w), (19)

2

0°v o~ . .
JpW = D1[E{ /Z(M;”)Div + E{ /2(Mg‘1)1)‘1u + E /Z(qu)Diw] + DME Dyv + M3 Dyu + M1’ Dyw]

+ D{[MZDiv + My Djyu + M7 Dyw] + D3[M3 D§v + M§’ Diu + M} D§w]

+ DY[M¥ Dy + M5 Dju + My Diyw] + DM Djyv + M5 Djyu + M{"Dyw)

+ DyIM5 Dfv + M3 Dfu + My Diw] + DZ[E} ,(MY)D’, v + Ef ;,(M5) D% u + Ef 1, (M{)D%w]

+ D[E} ,(M$) Do + E (M5 ) DY u + E ), (M) DY w] = LY (u, v, w), (20)
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0w S N Sq 1S S S
Ip—a = DUIE],(MI)DLu + Ef (MDY v + Ef ), (Mg") DY w] + DYIM! Dy + My Dyw + M Dyw]

+ D[M§ Diu + M} Djv + MZDiyw] + Di[M$’ Dgu + M{’ D§v + M Diw]

+ D3[M5 Dyu + M7 Dyv + MY Diyw] + DM Diju + M Div + M{"Djyw]
+ Dy[M3 Dgu + M3 Dgv + M Diw] + D" [EY ,(M5) D' u + EY ), (M}")D'y v + E7 (M) D’ w]

+ D[E} ) (M$)DYu + E} ) (M5) D% v + B}, (M) DY w] = L™ (u, v, ), 1)

in the grid points (g;,7;,5%), (i, ], k)€[l, Ny x [1, N,]x
[1,N,]. We have introduced the following notations for
the material and metric terms in order to express the discre-
tized equations in a more compact form:

MY = Jk,lcqy + Tkylycos + Tk 1 cyg,

ME = Jk,Lycin + Tkyl,ceq.

MK = Jkl.cis + Jk.lcy,

MY = Jkylci5 + Tk Lycyy,

ME = Tkl ces + Jkylycyy + Tk L cay.

Mg = Tkl caq + Tkylycaq + Tk 1 c33, (22)

where k and [ represent the metric coefficients ¢, r, or s.

We discretize in time using second-order accurate cen-
tered differences. The full set of discretized equations is
(un+l _ Zun + un—l
p 2
o

) — L(u)(un’ Un,wn)’

Un-‘rl — 20" + Un—l
p( 2 ) =L@ v" w"),
t
n+1 __ Iy’ n—1
p(w (;t; +w ) _ L(w)(unyvn’wn)’ (23)
t

where 8, represents the timestep.

A Discretization on the Curvilinear Grid: Free
Boundary Conditions

The boundary conditions (11)—(13) are discretized by

1
5[(M‘ix)i._j,3/2D'3rMi,j,l + (M%) j12D% u; ol + (M), ;1 DGu; jy + (M37); 1 DG, 1 + (M3T); ;1 Diw

1
+ 5[(M§s)i,j.3/2Di i1+ (M5 j12D%v; ol + (MY ;1 Doug o + (M5 ;1 Dgw; o+ (M3 ;1 Dgw; 4

1
+ 5[(M§s)i.j,3/2DiWi.j,1 + (M5°); j.1 oD% wi o]

=0, 24)
1 S s S
5[(Mgs)i,j.3/2qu-”i,j.] + (M%) ;12D%v; 0l + (M), ;1 Diw; iy + (M3); j1Ddus ;1 4+ (M) 1 Dgw; ;4
1
+ 5[(M§S);,j,3/2Di”i,j,1 + (M%) j1 oD% ui jol + (ME); ;1 Dgv; iy + (M5); 1 Dgu; .y + (M) j1Dgwi 4
1
+ 5[(Mis)i,j.3/2DiWi,j.1 + (M5); j.12D%5wi ol
=0, (25)
1 sS K sS K qs q qs q sq q
5[(M3 )ijaaDiuijy + (M5); ;1 oD% ui jol + (M3); ;1 Dou;jy + (M3 ) j1Dgviji + (Mg"); j1Dgwi ja
1
+ 5[(M51S)i,j,3/2Df|rvi,j,l + (M) j.12D% v jol + (M5); j1Doui i + (M); j1Dovi i + (Mg j1Dowija
1 i '
+ 5[(Mgs)i,j,3/2Dfi-Wi,j,l + (M§); j12D%wi ol
=0, (26)

for i = IL...Ngj=1,...N,.
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The key step in obtaining a stable explicit discretization
is to use the operator Dj, (which is one-sided on the bound-
ary) for the approximation of the normal derivative in 9,0,
0,0y, 0,0, and 0,0, cross derivatives. At first glance, it may
appear that using a one-sided operator would reduce the ac-
curacy of the method to the first order. However, as it was
theoretically shown by Nilsson et al. (2007) (for a Cartesian
discretization), a first-order error on the boundary in the dif-
ferential equations (19)—(21) can be absorbed as a second-
order perturbation of the boundary conditions (24)—(26).

In the finite-difference calculations, an artificial reflec-
tion arises at the edges of the model domain. To suppress this
spurious reflection, we adopt a combined absorbing bound-
ary condition by combing the n-time decoupled absorbing
boundary condition (Zhang et al., 1999; Yang et al., 2002;
Yang et al., 2003) and exponential damping (Cerjan et al.,
1985). In this paper, we choose n = 2, and the detailed
derivations and discretization can be found in the early
papers due to Zhang et al. (1993), Yang (1996), and He
and Zhang (1996).

Accuracy and Efficiency Tests

Accuracy

The accuracy of the proposed method is examined by
comparing the numerical results with the analytical solution
of the Lamb’s problem, first in an isotropic medium and then
in a transversely isotropic case with a vertical symmetry axis
(VTI medium).

Analytic Comparison for the Lamb’s Problem in an Isotropic
Medium. We choose a half-infinite elastic medium where
the P velocity is 623 m/s, the S velocity is 360 m/s, and
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the density is 1500 kg - m~ (a Poisson solid). A vertical Rick-
er wavelet point source, with a center frequency of 2 Hz (con-
taining frequencies up to 6 Hz), is loaded at a point 60 m below
the surface. Thus, in the chosen model of medium, the domi-

nant and minimum wavelengths of the S wave are A5 = 180
and A3. = 60 m, respectively. The solutions with the grid

spacings of 10 and 5 m, respectively, are benchmarked against
an analytical solution by H. Zhang and X. Chen (2006). The
numbers of grid points per shortest shear wavelength for both
of these grid intervals are about 6 and 12, respectively. We
present the time-series of the vertical component recorded
180, 1080, and 1980 m from the source, that is, records at
the distances of 1, 6, and 11 times the dominant wavelength
from the source, respectively (Fig. 3). It can be seen clearly
that the results with 12 grid spacings per minimum wave-
length (GSPMW) give much better agreements with the
analytic solutions than those with only 6 GSPMW, and the
former also give a sufficient accuracy in modeling Rayleigh
wave propagation even for large distances.

In the following, we evaluate the accuracy of the numer-
ical method in a quantitative way by using an error criterion
defined by Kristek et al. (2002). The results are given in
Figure 4. It can be clearly seen that the results with 12
GSPMW give much better amplitudes of Rayleigh waves than
those with only 6 GSPMW, while both results give good
phases. This is in agreement with the conclusion based on
simple visual comparisons of the seismograms.

Analytic Comparison for the Lamb’s Problem in a VTI
Medium. The elastic parameters describing the VTI med-
ium are given in Table 1. The analytical solution is obtained
by convolving the free-surface Green’s function with the
source function (Payton, 1983; He and Zhang, 1996). A
vertical point source of the type:

(@)
1.5 1
= —Lamb . |—Lamb —Lamb
5 3 «. Modeling (6] 1 | Modeling (6) | 0.5 | Modeling (6)
Q D=\ ] D=112
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)
[a) -0.5
(—8 -0.5
£ 1 -1
g -4
-15 -15
(b) -
= —Lamb —Lamb 0.5 [—Lamb
g 1 - Modeling (12)| 0-5 - Modeling (12) - Modeling (12)
Q D=A _ —
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Figure 3. Comparison between numerical and analytical vertical components of the displacement at the epicentral distances of
ASoms 6AS s and 11XS . respectively, for the Lamb’s problem in the isotropic medium. Lamb’s result is the analytical solution while

the modeling result is the numerical solution. Numbers 6 and 12 mean the numbers of the grid spacings per minimum wavelength used

in the numerical calculation.
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Table 1
Medium Parameters in the Homogeneous Half-Space
11 (GPa)  ¢;3(GPa)  ¢3(GPa) ¢33 (GPa) ¢y (GPa)  p(g/cm’)
25.5 2.0 14.0 18.4 5.6 2.4
f(2) = e 033010 cos (1 — 1), (27)

with 7y = 0.5 s and a high cutoff frequency f, = 10 Hz, is
assumed to be located at the free surface of a 3D half-space
(Fig. 5). It should be mentioned that Carcione et al. (1992)
and Carcione (2000) presented an analytical comparison of
the point-source response in a 3D VTI medium in the absence
of the free surface. The comparisons are performed by first
transforming the 3D numerical results into a line-source re-
sponse by carrying out an integration along the receiver line
(Wapenaar et al., 1992) and then comparing the emerging
results with the 2D Lamb’s analytical solutions. The numer-
ical model contains 401 x 401 x 191 grid nodes in the x, y,
and z directions, respectively. The grid spacings are 10 m in
all directions. The solution is advanced using a timestep of
1.25 ms for 3.5 s.

Three receiver lines are positioned on the free surface,
two of which are parallel to the y direction with respective
normal distances of 130 (Line 1) and 1000 m (Line 2) away
from the point source, the other crosses the source location
and parallels the x direction (Line 3). The integrations are
performed along the first two receiver lines; these represent
2D results of 130 and 1000 m away from the source, respec-
tively. Figure 6 shows the comparisons between the resulting
numerical and 2D analytical z components of the displace-
ment for the VTI medium. In spite of the errors resulting from
the transformation of the point-source response into the line-
source one, numerical and analytical results agree well in
Figure 6. These comparisons demonstrate the accuracy of
our corresponding algorithm.

Envelope Misfit

H. Lan and Z. Zhang

1900 m

Source

Figure 5. Model of a half-space with a planar free surface. The
source locates at (300 m, 2000 m) at the surface, which is marked as
an asterisk. Three receiver lines (Line 1, Line 2, and Line 3) are also
marked. Lines 1 and 2 are parallel to the y direction with normal
distances of 130 and 1000 m from the point-source, respectively.
Line 3 crosses the source location and lies in the x direction.

Synthetic seismograms are computed at Line 3. The
seismograms in Figure 7 show the direct quasi-P wave (gP)
and a high-amplitude Rayleigh wave (R). Snapshots of the
vertical component of the wave field in the horizontal (xy)
plane at the propagation time of 1.4 s are displayed in
Figure 8. We define the incidence plane by the propagation
direction and the z axis, quasi-P wave and quasi-SV wave
(¢SV) motions lie in this plane, while SH motion is normal
to the plane. Hence, the z component does not contain SH
motion. The xy plane of a transversely isotropic medium is a
plane of isotropy, where the velocity of the g P wave is about
3260 ms~' and the velocity of the ¢SV wave is about
1528 ms~!. The amplitude of the gP wave is so weak com-
pared with that of the Rayleigh and ¢SV wave that one can
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Accuracy of the numerical method for the Lamb’s problem in the isotropic medium. The envelope and phase misfits are

evaluated against the normalized epicentral distance. Sampling ratios 6 and 12 are used in the numerical solutions, respectively.
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Comparison between numerical and analytical vertical components of the displacement for the Lamb’s problem in the VTI

medium: (a) Line 1 parallels the y direction, at normal distance of 130 m from the energy source (Fig. 5); (b) Line 2 parallels the y direction, at
normal distance of 1000 m from the energy source. Lamb’s result is an analytical solution of the 2D Lamb’s problem of the VTI medium. The
modeling result is the line-source response of the 3D VTI medium obtained by the superposition of the 3D point-source responses. A good

agreement is observed.

hardly identify it in the snapshot (Fig. 8a). In order to observe
the gP wave, the amplitude of the wave field is amplified
10 times. Owing to this, side reflections also appear in the
photo, as shown in Figure 8b. As the velocity of the Rayleigh
wave is very close to that of the ¢SV wave, the two waves
are almost superimposed, and it is difficult to distinguish
between the two in synthetic seismograms and snapshots.

Figure 9 shows the x-component of the wave field in the
vertical (xz) plane at 1.4 and 2.3 s propagation times. The xz
plane contains the receiver line (Line 3) and the source loca-
tion. Both snapshots show the wave front of the g P wave and
the ¢SV wave. The former snapshot (1.4 s) shows the ¢SV
wave with the cusps. A headwave (H) can also be found in
the photos; the headwave is a quasi-shear wave and is guided
along the surface by the gP wave.

Numerical Simulations on an Irregular (Nonflat)
Free Surface

Three numerical experiments with irregular free surfaces
are now investigated. The first example is a test on smooth
boundaries, while the second example consists of a hemi-
spherical depression to test the ability of the method for

(a) Distance (m) (b) Distance (m)
0 1000 2000 3000 4000 0 1000 2000 3000 4000
0.0 0.0
_ 108 10
L X
g g
£ 2.0 E 2.0
3.0 3.0
X-component Z-component
Figure 7.  Seismograms along Line 3 that cross the source loca-

tion and are parallel to the x direction (Fig. 5), for the planar surface
model: (a) x-component (horizontal) of the displacement; (b) z-
component (vertical). Symbol gP indicates the gP wave; R indi-
cates Rayleigh wave.

nonsmooth topography. For the sake of simplicity, both
examples are based on homogeneous half-spaces, that is, the
medium parameters are the same as in the case of a flat sur-
face (Table 1). The same source is located at the same place
as in the planar surface model, the timestep is 0.8 ms. The
total propagation time is 3.5 s for the two models. Finally, we
consider a two-layered model with a realistic topography.

Topography Simulating a Shaped Gaussian Hill. The first
model considered here is a half-space whose free surface is a
hill-like feature (Fig. 10). The shape of the hill resembles a
Gaussian curved surface given by the function

x —2000)2 y — 20002
z(x,y)z—lSOexp[—( 150 ) —( 150 ):|m,

(x. y)€[0 m, 4000 m]?. (28)

The computational domain extends to depth
z(x, y) = 2000 m. The volume is discretized with equal grid
nodes in each direction as in the planar surface one. The grid
spacings are 10 m in the x and y directions and about 10.5 m

X (m)

X (m)
(a) 0 1000 2000 3000 4000 (b) 0 1000 2000 3000 4000

0 0

1000 1000
£ 2000 £ 2000 |
> >

3000 3000

4000 4000

T=14s T=14s

Figure 8.  Snapshots of the vertical component of the wave field
at the surface (xy plane) of the planar surface model. The amplitude
of the wave field in (b) is 10 times enlarged compared with (a). The
quasi-P wave (¢gP), Rayleigh wave (R), and side reflections are
marked (SR).
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X (m) ( ) X (m)

(a 0 1000 2000 3000 4000 0 1000 2000 3000 4000
0

—

Figure 9.  Snapshots of the x component of the wave field in the
vertical (xz) plane that contains the receiver line and the source at
(a) 1.4 s and (b) 2.3 s propagation times for the planar surface mod-
el. The quasi-P wave (gP), quasi-SV wave (¢SV), and a head wave
(H) generated at the free surface are marked.

in the z direction for average. The vertical spacing varies with
depth; it is smaller toward the free surface and larger toward
the bottom of the model. The minimum and maximum of the
vertical spacings are 6 and 12 m, respectively.

The gridding scheme that shows the detailed cross
section of the grids along Line 3 is shown in Figure 11.
Synthetic seismograms are also computed at Line 3 (Fig. 12).
As aresult of the hill-shaped free surface (and compared with
the synthetic seismograms in Figure 7), the amplitudes of the
quasi-P wave and Rayleigh wave are reduced in the right part
of the sections. In addition, after the ordinary quasi-P wave a
secondary quasi-P wave (RgP f) induced by the scattering of
the direct Rayleigh wave can be observed. Similarly, a
secondary Rayleigh wave (gPRf) that travels in front of the
ordinary Rayleigh wave induced by the scattering of the
direct quasi-P wave can also be distinguished. Some energy
is scattered back to the left side as a Rayleigh wave (gPRb,
RR) and a quasi-P wave (RqPb).

Snapshots of the wave field in the horizontal (xy) plane at
different propagation times are displayed in Figure 13. The
amplitudes are 10 times enlarged. In the beginning the wave
field propagates undisturbed along the free surface. At 1.1 s
the direct quasi-P wave hits the hill and generates a circular

LIS
D SSS3S3553s

2000 m

Figure 10. Model of a half-space with Gaussian shape hill to-
pography. The size of the model is 4000 m x 4000 m x 2000 m.
The source locates at (300 m, 2000 m) at the surface, which is
marked as an asterisk. The receiver line (Line 3) crossing the source
location and lying in the x direction is also marked.

H. Lan and Z. Zhang

Figure 11. The gridding scheme that shows the detailed cross
section of the grids along Line 3 in the Gaussian shape hill topo-
graphy model. For clarity, the grids are displayed with a reducing
density factor of 3.

diffracted wave. This wave is a Rayleigh wave, which is
marked as two parts: one travels forward (¢ PR f) and the other
travels backward (¢gPRb). These can be seen clearly in the
later snapshots (1.4-2.3 s). In addition, a reflected Rayleigh
wave (RR) can be observed. The direct quasi-P wave (¢ P) and
Rayleigh wave (R) are also marked in the figure. By the way,
side reflections from the boundaries can also be noted in the
plane. Figure 14 shows the x component of the wave field in
the vertical (xz) plane. The xz plane contains the receiver
line and source location. The snapshots show the diffracted
quasi-P and quasi-SV waves clearly in the vertical plane.

Topography Simulating a Shaped Hemispherical Depres-
sion. In the second model, we consider a hemispherical
depression model as illustrated in Figure 15. The first model
that we have considered is of smooth topography, that is, with
continuous and finite slopes everywhere. However, the
shaped hemispherical depression here taken as a reference is
a case of extreme topography, such that the vertical-to-
horizontal ratio of the depression is very large (1:2) and
the slopes of the edges tend to infinity. The hemispherical

Distance (m)

Distance (m)
(a) (b) 0 1000 2000 3000 4000

0 1000 2000 3000 4000

Time (s)
Time (s)

X-component Z-component

Figure 12. Seismograms along the receiver line for the Gaus-
sian shape hill topography model: (a) x component (horizontal) of
the displacement; (b) z component (vertical). Symbols are: gPd: gP
wave diffracts to g P wave; Rd: Rayleigh wave diffracts to Rayleigh
wave; gPRf: qP wave scatters to Rayleigh wave and propagates
forward; gPRb: qP wave scatters to Rayleigh wave and propagates
backward; RgPf: Rayleigh wave scatters to gP wave and propa-
gates forward; RgPb: Rayleigh wave scatters to gP wave and pro-
pagates backward; RR: Rayleigh wave reflects to Rayleigh wave.
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Figure 13. Snapshots of the vertical component of the wave
field at the surface (xy plane) at different propagation times for
the Gaussian shape hill topography model. To see the scattered
waves especially the scatterings from the gP wave clearly, the am-
plitudes of the wave field have been amplified 10 times. Side reflec-
tions from the boundaries also appear in the photos (SR). Symbols
are: gP: the gP wave; R: the Rayleigh wave; gPRf: qP wave scat-
ters to Rayleigh wave and propagates forward; gPRb: gP wave
scatters to Rayleigh wave and propagates backward; RR: Rayleigh
wave reflects to Rayleigh wave.

depression is at the middle of the free surface, and the radius
is 150 m.

The numerical model is discretized in the same way as in
the hill topography model. The gridding scheme that shows
the detailed cross section of the grids along Line 3 is shown
in Figure 16. Owing to the existence of model edges with
strong slopes at x = 1850 and x = 2150 m along the recei-
ver line, both body waves and Rayleigh waves scattered by
sharp changes in the topography can be clearly observed on
the synthetic seismograms shown in Figure 17. Owing to its
shorter wavelength, the scattering of Rayleigh waves is much
stronger than that of the body waves when propagating
through the hemispherical depression, thus indicating that
such sharp depression can affect the propagation of Rayleigh
waves significantly.

The photos in Figure 18 show the vertical component of
the wave field in the horizontal (xy) plane. Compared with
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1000
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X (m)

Snapshots of the x component of the wave field in

the vertical (xz) plane that contains the receiver line and the source
at different propagation times for the Gaussian shape hill topogra-
phy model.

the photos of the hill topography model, we can see the
Rayleigh wave scattering at the edges of the hemispherical
depression; it seems as if the reflected Rayleigh wave pro-
pagates faster in the hemispherical depression model than in
the hill topography model. What’s more, the back-scattered

2000 m

4[&17

Figure 15. Model of a half-space with hemispherical shape
depression topography. The size of the model is 4000 mx
4000 m x 2000 m. The source locates at (300 m, 2000 m) at the
surface, which is marked as an asterisk. The receiver line (Line
3) crossing the source location and lying in the x direction is also
marked.
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Figure 16. The gridding scheme that shows the detailed cross
section of the grids along Line 3 in the hemispherical shape depres-
sion topography model. For clarity, the grids are displayed with a
reducing density factor of 3.

waves of Rayleigh wave in the hemispherical depression
model are much stronger; this may also indicate that such
sharp depression blocks the propagation of Rayleigh wave
more significantly.

Real Topography Simulating. It is also interesting to study
a realistic example. We consider a model in Tibet (Fig. 19).
The length and width of the model are 21.6 km, and the aver-
age height of the topography is roughly —3560 m (3560 m in
the geodetic coordinate system). The digital elevation data
set is provided by International Scientific & Technical Data
Mirror Site, Computer Network Information Center, Chinese
Academy of Sciences (see the Data and Resources section).
The computational domain is extended to depth z(x,y) =
7200 m. For simplicity we use a two-layered model with
parameters given in the model sketch (Fig. 19) instead of
the real velocity structure under the realistic topography.
It consists of 241 x 241 x 121 grid nodes in the x, y, and
z directions, respectively, with equal vertical grid nodes in
each layer. A vertical point source such as the one used in
previous models is loaded in the middle of the free surface,

( a) Distance (m) (b)
" 0 1000 2000 3000 4000

Distance (m)
0 1000 2000 3000 4000
0

X-component

Z-component

Figure 17. Seismograms at the receiver line for the hemisphe-
rical shape depression topography model: (a) x component (hori-
zontal) of the displacement; (b) z component (vertical). Symbols
are: gPd: gP wave diffracts to gP wave; Rd: Rayleigh wave dif-
fracts to Rayleigh wave; gPRf: g P wave scatters to Rayleigh wave
and propagates forward; gPRb: g P wave scatters to Rayleigh wave
and propagates backward; RgPf: Rayleigh wave scatters to gP
wave and propagates forward; RgPb: Rayleigh wave scatters to
gP wave and propagates backward; RR: Rayleigh wave reflects
to Rayleigh wave.
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Figure 18. Snapshots of the vertical component of the wave
field at the surface (xy plane) at different propagation times for
the hemispherical shape depression topography model. To see
the scattered waves especially the scatterings from the gP wave
clearly, the amplitudes of the wave field have been amplified
10 times. Side reflections from the boundaries also appear in the
photos (SR). Symbols are: gP: the gP wave; R: the Rayleigh wave;
qPRf: qP wave scatters to Rayleigh wave and propagates forward;
qPRb: gP wave scatters to Rayleigh wave and propagates back-
ward; RR: Rayleigh wave reflects to Rayleigh wave.

where the high cutoff frequency has been changed to 2.7 Hz
and the time-shift is 1.5 s. Two lines of receivers crossing the
source location and paralleling the x and y directions, respec-
tively, are placed at the free surface. The timestep is 5 ms,
and the total propagation time is 8 s.

Snapshots of the z component of the wave field in the
vertical plane that contains receiver Line 1 and the source
location are presented on Figure 20, and the seismograms
of the z component are also computed at the two receiver
lines (Fig. 21). We can see that the effect of the topography
is very important, with strong scattered phases that are super-
imposed to the direct and reflected waves, which make it
very difficult to identify effective reflections from subsurface
interface. The scattering in the seismograms also reflect dif-
ferent features of the surface. The scattering in the seismo-
grams at Line 1 (Fig. 21a) is much stronger than in the
seismogram at Line 2 (Fig. 21b), indicating that the surface
along Line 1 is much rougher than along Line 2, which also
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Figure 19. A two-layered model with a realistic topography.
The medium parameters of each layer are also given in the figure.
The surface shows the topography in a 21.6 x 21.6 km? area in
Tibet. Labels are in kilometers and elevations are in meters above
mean sea level. The units for the elasticity and density are GPa and
g/cm?, respectively. The location of the source on the surface is
indicated by the asterisk. The two receiver lines crossing the source
location are also marked.
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Figure 20. Snapshots of the vertical component of the wave
field in the vertical (xz) plane along Line 1 at different propagation
times for the two-layered model with a realistic topography.
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Figure 21.  Vertical-component synthetic seismograms coming
from the two-layered model with real topography represented in
Figure 19: (a) at the receiver line (Line 1) that crosses the source
location and is parallel to the x direction (Fig. 19); (b) at the receiver
line (Line 2) that crosses the source location and is parallel to the y
direction.
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can be observed in Figure 19. What’s more, the scattering
in Figure 2la is almost uniformly distributed, while in
Figure 21b it is mostly distributed in the vicinity of the shot.
These may due to different distributions of the surface topo-
graphy along these two lines.

Conclusion

We propose a stable and explicit finite-difference meth-
od to simulate with second-order accuracy the propagation of
seismic waves in a 3D heterogeneous transversely isotropic
medium with nonflat free surface. The method is an exten-
sion of the 2D method proposed by Appelo and Petersson
(2009) to the 3D anisotropic case. The surface topography
is introduced via mapping rectangular grids to curved grids.
The accurate application of the free-surface boundary condi-
tions is done by using boundary-modified difference opera-
tors to discretize the mixed derivatives in the governing
equations of the problem. Several numerical examples under
different assumptions of free surface are given to highlight
the complications of realistic seismic-wave propagation in
the vicinity of the earth surface. Synthetic seismograms and
snapshots explain diffractions, scattering, multiple reflec-
tions, and converted waves provoked by the features of the
free-surface topography. The typical cuspidal triangles of the
quasi-transverse (gS) mode also appear in the snapshots of
the anisotropic medium.

The future directions of our research will include an ex-
tension of the schemes to the viscoelastic case. This will al-
low a realistic attenuation of the seismic waves due to the
presence of a weathered layer to be included (Carcione ef al.,
1988; Carcione, 1993, 2000).

Data and Resources

The International Scientific & Technical Data Mirror
Site, Computer Network Information Center, Chinese Acad-
emy of Sciences was searched using datamirror.csdb.cn (last
accessed July 2010).
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Appendix A

Partial Derivatives and Jacobian

In the Transformation between Curvilinear and Carte-
sian Coordinates section, the formulation involves the partial
derivatives dq/0x, 0q/0dy, 0q/dz, dr/dx, Or/dy, dr/0z,
0s/0x, Os/0dy, 0s/0z. They can be found from

al = V¢ = %(aj xay),  ((=123), (AD)

(i, J, k)cyclic,

where al (i = 1, 2, 3) are the three contravariant base vectors
of the curvilinear coordinate system, where the three curvi-
linear coordinates are represented by & (i = 1, 2, 3), that is,
q, r, and s in this paper. The contravariant base vectors are
normal to the three coordinate surfaces. a; (i = 1, 2, 3) are
the three covariant base vectors of the curvilinear coordinate
system, and the subscript i in a; indicates the base vector
corresponding to the & coordinate, that is, the tangent to
the coordinate line along which only & varies. The covariant
base vectors can be expressed in the form

a; = xgi + yoj + 20K, (i=1,23), (A2)

that is,
ap = x, i+ yJ+ 7k, (A3)
a=xi+yj+z, (A4)
az = x, + y,j + .k, (AS)

where i, j, and k are unit vectors in the x, y, and z directions,
respectively. J is the Jacobian of the transformation and is
given by

X, Xy X
J = Yo Yr Vs (A6)
% I

Equation (A1) can be written in a more explicit form

1
al = vq = Cle + Qy‘] + qZk = jaZ X as, (A7)

(A8)

1
a2 =Vr=ri+rj+rk= Fa3 X ay,
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1
ad=Vs=si+sj+sk= 81X . (A9)
After using equations (A3)—(AS) to substitute the covar-
iant base vectors in equations (A7)-(A9), we can get the
expression (4).

Appendix B

Conservative Form of the Momentum Equations

For 3D inhomogeneous, linear, anisotropic elastic med-
ium, the tensor form of the second-order partial differential
displacement-stress equations consist of the momentum
conservation equation

0*u
Pz =V B1)
and the generalized Hook’s Law
Okl = Cijki€ij» (B2)

where i, j, k, ] = x, y, z. In curvilinear coordinates, the
operator V - A can be expressed in two forms (Thompson
et al., 1985), namely: the conservative form

H. Lan and Z. Zhang

3

1 .
V-A= 7;[13 -Ale, (B3)
and the nonconservative form
3
V~A=Zai'A£i, (B4)
i=1

where £'c{q, r, s}, J is the Jacobian of the transformation,
and a' (i = 1, 2, 3) are the contravariant base vectors, which
can be found in Appendix A. Substituting the conservative
form of the operator V into the momentum conservation
equation (5a)—(5c), we can deduce the conservative form
of the momentum equation in curvilinear coordinates as
equations (7)—(9).
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