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The need to obtain more reliable Earth structures has been the impetus for conducting joint inversions of
disparate geophysical datasets. For seismic arrival time tomography, joint inversion of arrival time and gravity
data has become an important way to investigate velocity structure of the crust and upper mantle. However,
the absence of an efficient approach for modeling gravity effects in spherical coordinates limits the joint
tomographic analysis to only local scales. In order to extend the joint tomographic inversion into spherical
coordinates, and enable it to be feasible for regional studies, we develop an efficient and adaptive approach for
modeling gravity effects in spherical coordinates based on the longitudinal/latitudinal grid spacing. The
complete gravity effects of spherical prisms, including gravitational potential, gravity vector and tensor
gradients, are calculated by numerical integration of the Gauss–Legendre quadrature (GLQ). To ensure the
efficiency of the gravity modeling, spherical prisms are recursively subdivided into smaller units according to
their distances to the observation point. This approach is compatible with the parameterization of regional
arrival time tomography for large areas, in which both the near- and far-field effects of the Earth's curvature
cannot be ignored. Therefore, this approach can be implemented into the joint tomographic inversion of
arrival time and gravity data conveniently. As practical applications, the complete gravity effects of a single
anomalous density body have been calculated, and the gravity anomalies of two tomographic models in the
Taiwan region have also been obtained using empirical relationships between P-wave velocity and density.
l rights reserved.
© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The nonuniqueness inherent to all geophysical inversions limits
the geological and geophysical understanding of subsurface struc-
tures, whereas joint inversion of disparate geophysical datasets
provides a feasible way to obtain reliable models with higher
accuracy and resolution (Roecker, et al., 2004; Bosch et al., 2006;
Vermeesch et al., 2009). Recently, joint inversions of seismic arrival
time and gravity data have been conducted using empirical or
measured velocity–density relationship constraints (Birch, 1961;
Lees and VanDecar, 1991; Masson et al., 1998; Nielsen and Jacobsen,
2000; Afnimar et al., 2002; Roecker et al., 2004; Vermeesch et al.,
2009). Subsurface models derived from joint inversion could fit both
seismic arrival time and gravity datasets very well, and gravity
anomalies also provide important constraints on the lithospheric
structures (e.g., von Frese et al., 1997, 1999;Masson et al., 1998; Chen
and Ozalaybey, 1998; Bosch et al., 2006; Hao et al., 2007;
Asgharzadeh et al., 2007; Xu et al., 2009). This is especially true in
areas with sparse seismic ray path samplings, where the resolutions
from only arrival time data are low.
As gravity data not only provide important constraints on
subsurface structures, but also play an important role in joint
inversion with seismic arrival time data, there is a great need for
developing an efficient and accurate approach for modeling theo-
retical gravity effects of three-dimensional models. For tomographic
studies of local scale (e.g. 200 km or smaller in lateral directions), the
curvature of the Earth may be neglectable. Hence the Cartesian
coordinate system is appropriate for modeling this situation (by
applying Earth flattening transforms), and gravity effects can be
calculated conveniently by using analytic equations of rectangular
parallelepiped (Nielsen and Jacobsen, 2000; Afnimar et al., 2002;
Roecker et al., 2004; Vermeesch et al., 2009). Whereas for regional to
global studies (e.g. more than 200 km in lateral directions), the
curvature of the Earth needs to be accounted for in some manner.
Earth flattening transforms offer one way of doing this, but as they
are specifically applied to great circle paths, they are not convenient
for the fixed grid system used in the tomographic method (Li et al.,
2009a). As tomographic models are usually built on a mesh of grid
points that are regularly spaced in geographic latitude, longitude, and
depth, modeling gravity effects in spherical coordinates is a
straightforward way for the joint inversion of arrival time and
gravity data. An identical coordinate system for arrival time
tomography and gravity modeling makes it easy to carry out the
joint inversion.
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Table 1
Formulae for integral kernels of all gravity effects (Asgharzadeh et al., 2007).

Parameter⁎ g(rs,θs,ϕs,ro,θo,ϕo)

k Gρsrs2 sinθs
P k/Ros
gr k(− ro+rscosδ)/Ros3

gθ krs[−sinθocosθs+cosθosinθscos(ϕo−ϕs)]/Ros3

gϕ −krssinθssin(ϕo−ϕs))/Ros3

grr k(−R
os

2+3(ro− rscosδ)2)/Ros5

grθ krs[−sinθocosθs+cosθosinθscos(ϕo−ϕs)][Ros

2+3ro(−ro+rscosδ)]/Ros5

grϕ krssinθosinθssin(ϕo−ϕs)[−R
os

2+3ro(ro− rscosδ)]/Ros5

gθr 3krs(ro−rscosδ)[sinθocosθs−cosθosinθscos(ϕo−ϕs)]/Ros5

gθθ krs(−R
os

2 cosδ+3rors[sinθocosθs−cosθosinθscos(ϕo−ϕs)]2)/Ros5

gθϕ krssinθssin(ϕo−ϕs){−R
os

2 cosθo+3rorssinθo[sinθocosθs−
cosθosinθscos(ϕo−ϕs)]}/Ros5

gϕr 3krssinθssin(ϕo−ϕs)(ro− rscosδ)/Ros5

gϕθ 3krors
2 sinθssin(ϕo−ϕs)[sinθocosθs−cosθosinθscos(ϕo−ϕs)]/Ros5

gϕϕ krssinθs[−R
os

2 cos(ϕo−ϕs+3rorssinθosinθssin2(ϕo−ϕs)]/Ros5

⁎ Where G is the gravitational constant [6.67×10−11 m3 kg−1 s−2], and ρs is the
residual density of spherical prism. P is the gravitational potential, gr, gθ, and gϕ, are
radial, north–south, and east–west gravity vector components; grr, grθ, grϕ, gθr, gθθ, gθϕ,
gϕr, gϕθ, and gϕϕ are gravity tensor gradient components.
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Due to the complicated integral equations associated with
gravity modeling of spherical prisms, numerical approaches are
often utilized. The equivalent point source model is introduced to
evaluate the gravity effects (e.g. potential, vector and tensor
gradient fields) of arbitrary, spherical coordinate distributions of
anomalous mass with least-squares accuracy (von Frese et al.,
1981a, 1981b; Asgharzadeh et al., 2007). In order to model satellite
gravity effects, Asgharzadeh et al. (2007) explicitly developed the
elegant Gauss–Legendre quadrature (GLQ) formulae for spherical
prisms. An accurate solution could be obtained as long as the node
spacing is smaller than the distance between the source and the
observation point (Ku, 1977; von Frese et al., 1981b; Asgharzadeh
et al., 2007). Considering that the satellite orbit for gravity
measurement is at several hundred kilometer altitudes, the distance
between the source and the observation point is so large that the
highest practical accuracy of numerical integration can often be
obtained with a small number of GLQ nodes (Asgharzadeh et al.,
2007). However, for joint inversion of arrival time and gravity data,
Bouguer gravity anomalies used in the inversion represent the
gravity effects of subsurface structures at the sea level. Hence,
smaller node spacing must be adopted to ensure the accuracy of the
GLQ solution. Utilizing such a small size uniform node spacing for
GLQ integration adopted by Asgharzadeh et al. (2007) can become
too time consuming to be tractable. From a practical point of view,
uniform node spacing for all prisms through the whole model is
unnecessary, node spacing for each prism should be determined
according to the distance between each prism and the observation
point. Moreover, if the size of the prism is comparable with the
distance between the prism and the observation point, node spacing
for different parts of the prism should also be adjustable to prevent
redundant computation. Therefore, an adaptive strategy should be
considered on gravity modeling to ensure the efficiency and
accuracy simultaneously.

The motivation of this study is to develop an efficient and adaptive
approach for modeling gravity effects at sea level in spherical
coordinates, which should be capable of dealing with large computa-
tions associated with regional models in joint inversions of arrival
time and gravity data. In the following sections, the adaptive scheme
for subdividing prisms has been conducted to obtain an accurate
solution, and the performance of this approach has also been well
tested by comparisons with a previous approach, in which uniform
node spacing for GLQ integration is adopted. As applications, the
gravity potential, vector and tensor gradient fields of a single
anomalous body have been modeled, and gravity anomalies of two
three-dimensional velocity models in the Taiwan region have been
also calculated.

2. Method

2.1. Gravity effects for spherical prism

Based on the potential field theory, the gravity effects (i.e.
gravitational potential, spatial vector and tensor gradients of the
scalar gravitational potential) for one spherical prism at observation
point o can be expressed as a triple integral (Asgharzadeh et al.,
2007):

go = ∫r2
rs = r1

∫θ2
θs = θ1

∫ϕ2

ϕs =ϕ1
g rs; θs;ϕs; ro; θo;ϕoð Þdrsdθsdϕs ð1Þ

where go represents the different gravity effects at the observation
point o, g(rs,θs,ϕs, ro,θo,ϕo) represents the integral kernel of the
corresponding gravity effect (Table 1 in details); rs, θs, ϕs and ro, θo, ϕo

are the radius, geocentric colatitude, and longitude coordinates of the
source and observation points; r1, θ1, ϕ1 and r2, θ2, ϕ2 are the corner
coordinates of the radius, geocentric colatitude, and longitude of the
prism. Ros represents the distance from a node in the source prism to
the observation point, which is given by

Ros = r2o + r2s −2rors cos δ
� �1=2 ð2Þ

where

cos δ = cos θo cos θs + sin θo sin θs cos ϕo−ϕsð Þ: ð3Þ

By substituting Eqs. (2)–(3) into the formulae of all gravity effects
(Table 1) and substituting the corresponding g(rs,θs,ϕs, ro,θo,ϕo) into
Eq. (1), the integration formulae for modeling all gravity effects are
obtained. For a direct comparison with previous studies, the
Observation-centered convention has been adopted to determine
the signs of gravity effects (Asgharzadeh et al., 2007).

2.2. Gauss–Legendre quadrature integration

Due to the complicated nature of analytical integration in Eq. (1),
the numerical integration of GLQ has been adopted to evaluate the
triple integral of Eq. (1) with a least-squares numerical solution
(Stroud and Secrest, 1966; von Frese, et al., 1981b; Asgharzadeh et al.,
2007). Following the GLQ decomposition, the integral Eq. (1) can be
rewritten as below:

r2−r1ð Þ θ2−θ1ð Þ ϕ2−ϕ1ð Þ
8

∑
K

k=1
∑
J

j=1
∑
I

i=1
CiCjCk g rsi; θsj;ϕsk; ro; θo;ϕo

� �
ð4Þ

where the number of nodes (I, J, K) are for GLQ integration of r, θ, ϕ
coordinates, then the gravity effects of I× J×K equivalent point
sources are summed to simulate the effects of the spherical prism. The
coordinates (rsi, θsj, ϕsk) are the actual coordinates within the prism,
and the Gauss–Legendre coefficients (Ci, Cj, Ck) correspond to the
coordinates (rip, θjp, ϕkp) of the Gaussian node in the interval (−1, 1).
rsi, θsj, ϕsk are given by:

rsi =
rip r2−r1ð Þ + r2 + r1ð Þ

2

θsj =
θjp θ2−θ1ð Þ + θ2 + θ1ð Þ

2

ϕsk =
ϕkp ϕ2−ϕ1ð Þ + ϕ2 + ϕ1ð Þ

2
:

8>>>>>>><
>>>>>>>:

ð5Þ



Fig. 1. Synthetic density model in spherical coordinates. Gray squares indicate the grid points with 10% density residuals, and gray circles are the grids with−10% density residuals.
Dashed lines represent two profiles for gravity analysis. Grid point locations are indicated by small crosses.
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Since rsi is always less than r2 according to Eq. (5), then Ros is
always greater than zero. Therefore, the GLQ technique to the gravity
modeling of ground measurements (i.e., the observation point is atop
the spherical prism) will not cause singularities.
2.3. Adaptive scheme of GLQ integration for spherical prism

The accuracy of GLQ integration generally depends on the node
spacing, the smaller the node spacing, the more accurate solutions will



Table 2
Synthetic density model for numerical experiments. The anomalous densities for
calculating gravity effects are ±10% relative to the 1-D background model.

Depth
(km)

Density
(g/cm3)

Positive residuals
(g/cm3)

Negative residuals
(g/cm3)

0 2.60 0.260 −0.260
5 2.72 0.272 −0.272
10 2.72 0.272 −0.272
15 2.72 0.272 −0.272
20 2.72 0.272 −0.272
25 2.92 0.292 −0.292
30 2.92 0.292 −0.292
35 2.92 0.292 −0.292
40 3.32 0.332 −0.332
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be. Moreover, numerical accuracy obtained with smaller prisms is
equivalent to that obtained with small node spacing for GLQ
integration. In order to ensure sufficient accuracy for the gravity
modeling, we prefer to subdivide each prism into smaller units rather
than decrease the node spacing. Before the GLQ integration, the prism
Fig. 2. Gravity anomalies along profiles A (figure a) and B (figure b) from GLQ integration w
Node spacing of GLQ is 5, 2, 1, 0.5, 0.2, and 0.1 km, and the corresponding gravity anomalies a
dashed black line represents the gravity with 0.1 km node spacing; middle ones are the diffe
with 0.1 km node spacing; lower ones are the percentage (%) of the gravity differences as m
will be subdivided into smaller units if themaximum side lengths of the
prism are greater than the minimum distance between the source
prism and the observation points to a certain extent. Subdividing will
continually be applied on the smaller prisms recursively until all prisms
are small enough compared to the distance between the source and the
observation point (for the details, see Appendix A). The advantages of
this approach include (1) subdividing for each prismwill not introduce
any approximations into the gravity modeling; (2) the subdividing is
much more efficient than the GLQ integration of equivalent node
spacing; (3) node spacing for GLQ integration could also be determined
conveniently for a different part of the prism after subdividing, which
means the node spacing becomes sparser with the increasing distance
between the source and the observation point. Therefore, a more
efficient performance than the uniform node spacing for GLQ
integration will be achieved. After the source region has been
subdivided optimally, the GLQ integration will next be implemented
to calculate the gravity effects. In practice, the lower limit of the
minimum side length of the prism is set to prevent the program from
infinitely or excessively subdividing when the distance to the
observation point is zero or close to zero (e.g. the observation point is
ith a different node spacing uniformly distributed for all prisms in the synthetic model.
re shown by lines with different colors. Uppermaps are the gravity anomalies, where the
rences between solutions with node spacings of 5, 2, 1, 0.5 and 0.2 km and the solutions
iddle ones.

image of Fig.�2


Fig. 3. A similar figure as Fig. 2 except that gravity is calculated by the adaptive approach.NS is set to be 1/2, 1, 2, 5, 10 and 20.MinPrismS is set to be 0.1 km (for the meaning of NS and
MinPrismS, see Appendix A). Reference gravity anomalies for calculating the differences are taken from the solution with a uniform node spacing of 0.1 km (dashed lines in the upper
maps).
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atop the prism). If the side length of the prism has already been less
than the lower limit of minimum side length, subdividing will be
stopped and the GLQ integration will be conducted on this prism.

Although the rapid development of computation technology may
reduce the burden of the numerical integration in gravity modeling,
an efficient and accurate approach is always needed to conduct many
trials in the geophysical inversions to achieve an optimized solution.
Smaller prisms and closer spaced node spacing result in a more
accurate solution, but at a cost of increased computational time.
Previous studies indicate that as long as the node spacing for GLQ
integration is less than the distance between the source and the
observation point, the accuracy of numerical integration remains
essentially unchanged for a different node spacing (Ku, 1977; von
Frese et al., 1981b; Asgharzadeh et al., 2007). This conclusion is also
valid for the size of the prism. Since the distances between all prisms
in the model and the observation point vary from 0 (e.g., atop the
surface of the model) to hundreds of kilometers (to the far corner of
the model bottom), prism subdivision will gradually reduce with the
increase of the distance between the source and the observation
point. Most subdivision and computation are conducted on a few
prisms close to the observation point, while other prisms far away
from the observation point only require a few computations.
Therefore, the adaptive scheme could avoid lots of unnecessary
computations on the condition that required accuracy is satisfied.

3. Analysis

3.1. Model parameterization

With the three-dimensional velocity model from tomographic
inversion, a density model can be obtained by presuming a functional
relationship between density and P-wave velocity based on labora-
tory measurements (Birch, 1961; Gardner et al., 1974; Christensen
and Mooney, 1995; Roecker et al., 2004; Vermeesch et al., 2009). Only
the residual density relative to the 1-D model is used to calculate the
gravity anomalies. As the density remains constant across the prism in
the GLQ integration, the density of each grid in the model is presumed
constant within a cube with the grid at the center. Since the density
model is constructed in the geographic coordinates with a mesh of
grid points regularly spaced in geographic longitude, latitude and
depth (Fig. 1), it is compatible with the coordinate systemwidely used
in the regional tomography study. Considering the flattening of the

image of Fig.�3


Fig. 4. A similar figure as Fig. 3 except that NS is 10, and MinPrismS is set to be 10, 5, 2, 1, 0.5, 0.2 and 0.1 km.
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Earth, the geographic system is transformed into geocentric coordi-
nates as done in regional arrival time tomography.

3.2. Numerical experiments

A synthetic density model is constructed to verify our approach. As
shown in Fig. 1, the synthetic model is characterized by simple density
anomalies: four 10% positive or negative anomalous bodies are located
at different places and depths (relative to the 1-D background model,
see Table 2). Observation points along profiles A and B are all at sea
level with a lateral interval of 0.05°. Numerical experiments are
conducted to evaluate the effects of NS and MinPrismS on the accuracy
of gravity modeling solutions (NS is the ratio of the minimum distance
between the source prism and the observation point vs the maximum
side length of the source prism, and MinPrismS is the lower limit of the
minimum side length of the source prism). As the 0.1 km uniform node
spacing is usually adopted by terrain correction for regional gravity
surveys (Smith et al., 2001; Fullea et al., 2008), then the gravity effects
with a 0.1 kmuniformnode spacing for GLQ integration are taken as the
references to analyze other solutions with different parameters.

The first experiment shows the gravity effects along profiles
A and B (Fig. 1) calculated with different node spacings (5, 2, 1, 0.5,
0.2, and 0.1 km) for GLQ integration uniformly distributed for all
prisms in the model. For profile A (Fig. 2a), except that the gravity
differences between the solutions with 5 and 0.1 km node spacing
reaches its maximum of 0.25 mGal (0.15%), other solutions are
essentially the same (lines represented these solutions almost
overlap). Whereas for profile B (Fig. 2b), the maximal gravity
difference between solutions with 5 km and 0.1 km node spacings
reaches 18 mGal (more than 8%). With the decrease of node spacing,
the maximal differences also decrease to less than 2 mGal (1%) for
the solution of 0.5 km node spacing, and become much smaller for
the 0.2 km node spacing.

The second experiment adopts the identical MinPrismS (0.1 km)
but with different NS of 1/2, 1, 2, 5, 10, and 20 (Fig. 3). Gravity
solutions with different NS on profile A show a very small difference
(less than 0.08 mGal or 0.2% when NS equals 1/2). For profile B, all
differences are less than 0.5 mGal (0.4%), suggesting that the accuracy
is not sensitive to NSwhenMinPrismS is small (0.1 km) and NS equals
1 or larger values.

The third experiment fixes NS to be 10 and adjustsMinPrismS to be
10, 5, 2, 1, 0.5, 0.2, and 0.1 km (Fig. 4). For profile A, except that the
solutions with MinPrismS=10 km have relatively large differences
(0.03 mGal or 0.02% maximally), other solutions are essentially the

image of Fig.�4


227Z. Li et al. / Journal of Applied Geophysics 73 (2011) 221–231
same (less than 0.01 mGal). For profile B, whenMinPrismS is less than
5 km, the maximal differences are all less than 0.5 mGal (0.2%).

The fourth experiment provides comparisons between the solu-
tions of uniform node spacing for GLQ integration and the adaptive
approach proposed by this study (Fig. 5). The observation point is at
(E124.1250, N35.5500) and the elevations vary from 0.1 to 200 km.
Different uniform node spacings (10, 5, 2, 1, 0.5, 0.2, and 0.1 km,) are
used in the former approach, while different MinPrismS (10, 5, 2, 1,
0.5, 0.2, and 0.1 km) andNS=10 are used in the later one. As shown in
Fig. 5, when the elevation increases to 1 km, the gravity differences
relative to the solution of uniform node spacing of 0.1 km for all
MinPrismS become less than 0.5 mGal. Whereas for the approach with
uniform node spacing, until the elevation increases to 5 km, the
gravity differences decrease below 0.5 mGal, suggesting the fast
convergence and high accuracy of the adaptive approach.

Above experiments suggest that the accuracy of gravity modeling
will be improvedwith the decrease of the prism's size and the increase
of the distance between the prism and the observation point. Relative
larger errors appear right upon the density anomalous bodies along
Fig. 5. Gravity anomalies for the observation point (E124.1250, N35.5500) with different elev
and percentages of gravity differences (lower) calculated with uniform node spacing (10,
approach with NS=10 andMinPrismS is set to be 10, 5, 2, 1, 0.5, 0.2 and 0.1 km. Gravity anom
the reference for calculating differences. Crosses indicate the gravity values for all elevatio
0.1 km.
profile B due to the observation point that is atop the prism. However,
by choosing proper parameters of NS and MinPrismS, the accuracy of
gravity effects (b0.5%) calculated by our approach can satisfy the
needs of regional joint inversion of arrival time and gravity data. The
above numerical experiments show that in order to obtain accurate
gravity solutions at sea level (e.g. b0.5%), NSN1 and Min-
PrismSb1.0 km are reasonable values for our approach. Although
only the comparisons of radial gravity are shown in the above
experiments, NS and MinPrismS have similar effects for other gravity
effects due to their similar formulae. Since the once, twice, and third
power of the distance between the source and the observation point
are the denominators in the formulae of gravity potential, vector and
tensor gradient field (Table 1), the gravity effects have different
sensitivities to the distance. Therefore, a stricter criterionwithNS=10
and MinPrismS=0.1 km is adopted in the following experiments to
achieve solutions with required accuracy.

Fig. 6 shows the node distributions for GLQ integrationwithNS=10
and MinPrismS=0.1 km (the observation point is at E124.1250,
N35.5500, 0 km). Horizontal and vertical profiles along the depth,
ations from 0.1 to 200 km. (a) Gravity anomalies (upper), gravity differences (middle),
5, 2, 1, 0.5, 0.2 and 0.1 km) for all prisms. (b) The results calculated by the adaptive
alies with uniform node spacing of 0.1 km (black squares in the left panel) are taken as
ns. Black squares in the right panel indicate gravity anomalies with MinPrismS equals

image of Fig.�5
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latitude, and longitude all show that the nodes are dense at the area
close to the observation point, and gradually become sparse farther
away from the observation point. As the number of nodes for GLQ
Fig. 6. Node distributions for GLQ integration beneath the observation point
(E124.1250, N35.5500). (a) Horizontal node distribution for prisms at 7.5–12.5 km
depth; (b) vertical node distribution of the prisms at latitude of N35.5500; (c) vertical
node distribution of the prisms at longitude of E124.1250. Small gray crosses indicate
the positions of GLQ nodes. Black crosses are themodel grids assigned the density value.
Black squares represent the location of the observation point. NS is 10, andMinPrismS is
0.1 km.
integration has decreased a lot, computations could be saved compared
to uniformly distributed GLQ nodes. Within a similar accuracy, our
approach ismoreefficient than the approachwithuniformnode spacing
for GLQ integration. For example, in the fourth experiment (Fig. 5), the
computational time is about 1376 s on Xeon CPUs with 0.1 km uniform
distributednodes (only the prismswith anomalousdensity are involved
in the computation, hence the computation will be huge if all prisms in
the model are involved). Whereas using the adaptive approach with
NS=10 and MinPrismS=0.1 km, the computational time decreases to
3.1 s when the observation point is at 0.1 km elevation, suggesting the
highly efficient performance of the adaptive approach.

4. Applications

The gravity effects of potential, vector and tensor gradients are
modeled for a 1.2°×1.2°×27.5 km prism with a positive density of
10% relative to the 1-D background model (Table 2). The observation
points are all at sea level, and the top and bottom of the anomalous
body are at 5 and 32.5 km depths. The patterns for all gravity effects
(Fig. 7) are similar to the results of Asgharzadeh et al. (2007) at the
altitude of 250 km. However, the gravity effects at sea level are much
closer to the anomalous bodies and could reflect more details of the
substructure.

The gravity anomalies of two three-dimensional velocitymodels in
the Taiwan region are also modeled by our approach. One model is
from the individual inversion of P- and S-wave arrival time only (Li
et al., 2009b), and another one is the preliminary result from the joint
inversion of arrival time and gravity data by the method proposed by
Roecker et al. (2004). The spherical finite difference technique is used
to implement the 3-D ray tracing (Li et al., 2009a). The P and S arrival
times are from the seismic station networks in the Taiwan region
during 1992–2004, which consists of about 135,000 P and 77,000 S
arrivals from nearly 6000 events at 92 stations (Li et al., 2009b). For
the joint inversion, the arrival time and gravity data are involved in
the inversion simultaneously. Note that the two models all fit arrival
time data very well. Bouguer gravity data used in the joint inversion
consist of 603 readings and approximately cover most part of the
Taiwan island (Yen et al., 1995). To calculate the gravity anomalies,
the P-wave velocity models are converted to density models based on
the empirical relationships between P-wave velocity and density
(Gardner et al., 1974; Christensen and Mooney, 1995; Roecker et al.,
2004).

The primary result of joint inversion is consistent with both types
of data, but still remains close to the model consisting of a best fit to
the arrival time data. The primary improvement in the 3-D velocity
model from joint inversion focuses on the structure near the Moho
discontinuity and deeper depth compared to that obtained from the
seismic data only, where the seismic ray paths are relatively sparse in
this depth, suggesting that gravity data do provide additional
information in the velocity model in the Taiwan region. Whereas for
the shallower depth in the crust, the main features of the two models
remain intact, and hence the interpretations based on the arrival time
model remain the same. Synthetic gravity anomalies are calculated
from the two tomographic models and compared to the observed
Bouguer gravity (Fig. 8). Gravity anomalies from joint inversion are
quite similar to the observations. The correlation coefficient reaches
0.70, and the gravity residuals for most observation points are less
than 20 mGal. Small scale gravity residuals may relate to the shallow
small scale structures, so that the coarse grid spacing of the
tomographic model (~10 km laterally and 4–16 km vertically) can't
compensate these gravity anomalies (Li et al., 2009b). Compared with
synthetic gravity anomalies of the model from arrival time inversion
only, the pattern has significant discrepancies and the correlation
coefficient is as low as 0.23. Gravity residuals also exceed 40 mGal for
most observation points, and the amplitudes of the residuals are
comparable with the observation values. It suggests that the model
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Fig. 7. Gravity effects (i.e. potential, vector and tensor gradient fields) of a single density anomalous body located at 5–32.5 km depth. Grid locations with density anomalies are
indicated by small crosses. The three off-diagonal elements of the gravity tensor gradient are symmetric (i.e. grθ=gθr, grϕ=gϕr, and gθϕ=gϕθ), hence only six unique components of
gravity tensor gradient are presented (i.e. grr, grϕ, grθ, gϕϕ, gϕθ, gθθ).
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from arrival time data only can't fit the gravity data very well, which
shows the necessity to conduct the joint inversion of arrival time and
gravity data to fit both observations simultaneously.

5. Conclusions

An efficient and adaptive approach for modeling gravity potential,
vector and tensor gradient fields is developed in spherical coordi-
nates. This approach adopts the numerical integration of GLQ to
prevent the modeling from complicated and daunting analytical
integrations. Efficient performance and implementation in spherical
coordinates makes this approach feasible for gravity modeling in the
joint inversion of arrival time and gravity data for regional studies. As
arrival time tomography has become a routine work for investigating
the lithospheric structure, based on the three-dimensional velocity
model and relationships between P-wave velocity and density, partial
derivative matrix relating observed gravity anomalies to velocity at
each grid of the model could be calculated conveniently. Therefore, a
simultaneous or sequential inversion system of arrival time and
gravity data can be built with this gravity modeling approach, which
may promote the application of joint inversion of arrival time and
gravity data, and provide more reliable structures of the Earth.
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Fig. 8. (a) Bouguer gravity in the Taiwan region. (b) Calculated gravity anomalies from a 3-D velocity model from the joint inversion of arrival time and gravity data. (c) Residuals
between Bouguer and calculated gravity shown in figure b. (d) Calculated gravity from 3-D velocity models from inversion of arrival time data only. (e) Residuals between Bouguer
and calculated gravity shown in figure d. Small crosses indicate the gravity observation locations.
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Moreover, as potential applications, this approach could be used for
modeling theoretical gravity fields of the Earth and other spherical
planets measured by satellite (Asgharzadeh et al., 2007). Terrain
corrections for regional gravity surveys could also be conducted with
this approach (Nowell, 1999; Fullea et al., 2008).
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Appendix A

In thegravitymodelingapproach, several variables areused to control
the required accuracy and efficiency during subdividing prisms into
smaller ones:NS,MinPrismS andNodeGLQ.NS is the ratio of theminimum
distance between the source prism and the observation point vs the
maximumside length of the source prism.MinPrismS is the lower limit of
the minimum side length of the prism. NodeGLQ is the number of nodes
for GLQ integration, which controls the node spacing of GLQ integration.
When the prism is small enough for required accuracy, NodeGLQ can be
set to be2 to prevent redundant computations as the integration solution
remains essentially unchanged for more nodes. Note that the minimum
distance between the prism and the observation point is calculated
roughly in spheres (“roughly” because the model parameterization is
latitude/longitude/depth based) (Smith et al., 2001). In practice, the
approximate distance has no significant influence on the modeling
accuracy. The pseudo code of the adaptive scheme for modeling one
prism's gravity effects is given below:

Void OnePrismGravityEffect ( Gravity, Prism_Information ) {
Calculate DIS and PrismS;
// DIS is the minimum distance between the source prism

and the observation point.
// PrismS is the maximum side length of the source prism.
NS=DIS/PrismS;
If ( DISN(NS*PrismS) or PrismSbMinPrismS ){ // if the prism is

small enough.
Collect gravity effect g by GLQ integration;
Gravity += g;

}

else { // if the prism is still too large
zn=1; xn=1; yn=1;
// PrismS_rad, PrismS_lon, and PrismS_colat are the side

lengths of the prism along
// radius, colatitude, and longitude.
Calculate PrismS_rad, PrismS_lon, PrismS_colat;
if ( Disb(NS* Prism_rad) and PrismS_radNMinPrismS) zn=2;
if ( Disb(NS* PrismS_lon) and PrismS_lonNMinPrismS )

xn=2;
if ( Disb(NS* PrismS_colat) and PrismS_colaNMinPrismS t)

yn=2;
for ( each new prism ){ // recursively call the subroutine for

each new prism;
OnePrismGravityEffect (Gravity, new_prism_Information, );

}

}

}

The recursive calls of subroutine OnePrismGravityEffect are used to
subdivide spherical prisms into smaller ones and collect gravity
effects of all small prisms.
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