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Image inpainting can remove unwanted objects and reconstruct the missing or damaged portions

of an image. The projection onto convex sets (POCS) is a classical method used in image

inpainting. However, the traditional POCS converges slowly due to the linear error threshold. We

propose an exponential-threshold scheme, which greatly improves the convergence of the POCS.

Although the exponential-threshold POCS can recover the image in about 20 iterations, it cannot

reconstruct the image details very well even with hundreds of iterations. Thus, we append the

non-local restoration to the exponential-threshold POCS to further refine the image details, and

then we solve this objective function using the conjugate gradient. Numerical experiments show

that for each iteration, the exponential-threshold POCS and the conjugate gradient have very

similar computational efficiencies. For an image with various topologies of the missing areas, our

scheme can recover missing pixels simultaneously and obtain a satisfied inpainting result in only

20 iterations of the exponential-threshold POCS and 20 iterations of the conjugate gradient. The

proposed method can excellently restore damaged photographs and remove superimposed text.

This method has less computational cost than the conjugate gradient and has a higher resolution

than the POCS.

Keywords: Projection onto convex sets, Inpainting, Exponential threshold, Conjugate gradient, Non-local restoration

Introduction
Image inpainting is important for restoring an image
that is blotted, contaminated or partially destroyed.1–3 It
is also popular for removing selected objects in a
perfectly sampled image. Usually, we assume that some
of the pixels in the entire image are credible, and they are
defined as valid pixels; meanwhile, the other parts are
partially credible or even completely unreliable, and they
are defined as invalid pixels. The image inpainting
automatically fills in the invalid pixels under the
constraints from the valid pixels. The resulting image
should be more unitary and legible than before and the
changes should be undetectable to an observer.

The projection onto convex sets (POCS) is a general
tool for convexly constrained parameter/function estima-
tion. For a more detailed historical review of the POCS,
readers may consult Combettes (1993),4 Bauschke and
Borwein (1996),5 Deutsch (2001)6 and Theodoridis
et al. (2011).7 The POCS is a classical method for image
inpainting.8–13 It is also an important part of advanced
image restoration.14,15 The main advantage of the POCS
is that it is simple to implement. The POCS is also
convenient for including a priori information as a

constraint during the iterations. The main disadvantage
of the POCS is that it has slow convergence and thus has
high computational cost. In addition, its ability to restore
detailed structures is still limited.

Although some quadratically convergent algorithms
are proposed,12,13,16 the reconstructed results of high
frequency components are still not satisfactory. An
important reason for this is that the cutoff error threshold
or stop criterion is difficult to determine in advance in
practical applications. However, the restoration of high
frequency components is highly dependent on the cutoff
error threshold. In addition, spectrum leakages are
inherent to an image with missing pixels; unfortunately,
these spectrum leakages are usually buried in low-energy
spectrum and are highly mixed with the spectrum of the
high frequency components. Therefore, it is difficult for
the POCS to completely separate the spectrum leakages
from the high frequency components, which means that
the POCS would lose a lot of detailed structures.

In this paper, we propose a new scheme that
accelerates the convergence of the POCS using an
exponential error threshold rather than the traditional
linear one. The idea comes from the exponential cooling
rate17,18 that is essential for a fast convergence of the
simulated annealing algorithm.19 The major advantage
of the exponential error threshold is that it can greatly
improve the convergence of the POCS;16 in addition, it is
very easy to implement and it maintains the algorithm
structure of the traditional POCS. Compared to
previous works on accelerating the convergence of the
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POCS, our scheme is one of the simplest in the literature,
and only requires a small change to the existing code. The
computational cost for each iteration is the same as that
of the traditional POCS implementation. More impor-
tantly, our scheme can perform almost all iterations
on the most urgent part by using small initial error
threshold as well as small steps. Therefore, our scheme
can reconstruct big gaps with much less iteration numbers
compared with both traditional linear error thresholds
and recently proposed exponential error threshold.16

Although our scheme makes the POCS converge
much faster than before and only needs a very limited
number of iterations (e.g. 20–50), it is still not able to
improve the final results for the high-frequency compo-
nents. Thus, we propose to only employ the most efficient
part of the POCS to generate a low-resolution result. Then,
this result is taken as an initial input for other methods that
are good at recovering the detailed information. The non-
local restoration20–23 solved with the conjugate gradient
(CG)24–26 is selected for the purpose of refining the high
frequency components, since it is powerful in reconstruct-
ing the details. The main drawback of this method is that it
requires many more iterations to reconstruct wide areas of
missing pixels (i.e. big holes).

The proposed hybrid scheme, the exponential-thresh-
old POCS plus the CG, fully takes advantage of both
and avoids their disadvantages as much as possible. The
iteration time of the proposed hybrid scheme is usually
about 20 for either the POCS or the CG. In contrast, the
pure POCS could not obtain high resolution even with
several hundreds of iterations, and the pure CG generally
needs about 200 iterations to obtain a similar-quality
image. Note that our experiments show that the
computational cost of the POCS is quite similar for each
iteration to that of the CG for various image sizes.

This paper is organised as follows: firstly, we give a
brief review of the traditional POCS; secondly, we
present a modified scheme that uses exponential error
threshold; thirdly, we show the hybrid scheme of POCS
and the CG; next, we show some examples to illustrate
the effectiveness of our hybrid scheme; and finally, we
draw some conclusions.

A brief review of traditional POCS
The basic idea of the POCS was first proposed by
Bregman27 and Gubin et al..28 Then it becomes popular
in image inpainting,8–13 motion deblurring,29,30 video
super-resolution reconstruction31,32 and other fields.33 In
the POCS, all image constraints are presented as a series
of closed convex sets in Hilbert space; then, starting
from an arbitrary initial value, the image is iteratively
projected onto the intersection of all closed convex sets
using the projection operator; finally, the image in the
intersection is regarded as the optimal solution.

The object image is represented by a two-dimensional
M6N array f(m,n), where m51, 2, …, M and n51, 2,
…, N. The two-dimensional discrete Fourier transform
of f(m,n) is given by
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and the inverse Fourier transform is given by
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where j5(21)1/2, 0#m,k#M21 and 0#n, l#N21. For
simplicity, we express them as F~=z fð Þ and
f ~={ Fð Þ, respectively. In the ith iteration for i50, 1,
2, …, I, the POCS is expressed as

fiz1~f0z 1{Wð Þ={ Ti=z fið Þ½ � (3)

where W;W(m,n) is a binary mask whose value is 0 if
the pixel is invalid and 1 otherwise, f05Wf is the input
image, and

Ti:Ti k,lð Þ~
1, if =z fið Þ§ei

0, if =z fið Þvei

�
: (4)

where ei is the error threshold. The iteration stops if the
error threshold ei is smaller than a given error limitation
of emin or if the total iteration times reach a given upper
limit. If the original image f 9 is known, we define the
evaluated error as

f ’{={ Ti=z fið Þ½ �k k2

f ’k k2
(5)

If the original image f 9 is not known, we define the
evaluated error as

f0{W={ Ti=z fið Þ½ �k k2

f0k k2
(6)

In the traditional POCS, the error threshold ei is
basically a linearly decreasing error threshold, that is

eiz1~ei{d (7)

where d is a fixed step. For a large step d, the iteration
would stop quickly but would possibly make the POCS
unusable, because the POCS with a large step usually
can not successfully converge to the intersection. For a
small step d, we can guarantee the convergence of the
POCS but would greatly increase the computational
cost. Note that there are two two-dimensional Fourier
transforms for each iteration, and the computational
cost is proportional to the iteration times. Even with fast
Fourier transforms, it is still extremely time-consuming
when total iteration times are large. Therefore, we
should significantly reduce the total iteration times to
make the POCS feasible for practical applications
especially for large images.

An exponential-threshold POCS
In literature of the simulated annealing algorithm,19 a
proper selection of the cooling rate (i.e. the error
threshold) has been proven to be essential for conver-
gence. Generally, an exponential cooling rate allows a
much quicker convergence of the simulated annealing
algorithm than the traditional linear one does.17,18 In
this paper, we introduce the exponential cooling rate to
improve the convergence of the POCS. The error
threshold ei of the modified POCS is changed from
equation (7) into
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eiz1~aei (8)

where a[ 0,1ð Þ is the factor of the exponential error
threshold. In case of a constant a during the iteration,
exponential error threshold ei in the ith iteration is
related to the initial error threshold e0 with a factor of ai.
That is

ei~aie0 (9)

In contrast, the traditional linear error threshold is

ei~e0{id (10)

Although the attenuation factor a is usually about
0?5–0?99, it makes the error threshold ei decay in the
form of an exponential function starting from the initial
error threshold e0. In contrast, although the attenuation
factor d is usually smaller than 0?001, it makes the error
threshold ei decay in the form of a linear function and is
subducted from the starting error threshold of e0.

According to numerical analyses, the initial error
threshold e0 of the exponential-threshold POCS has a
limited influence on the subsequent iteration. For
example, e0 can take either 0?6 or 0?9 but will not
destroy the convergence of the POCS. However, both
the initial error threshold e0 and the step of the error
threshold (i.e. the interval between two neighboring
error thresholds, eiz12ei or diz12di) are essential for the
convergence of the POCS. In fact, the step should be
small enough especially when the iteration times are
increasing. This indicates that the error threshold should
decrease gradually with increasing iteration times.
However, the linear threshold has a globally constant
step, which is unnecessarily fine for the beginning of the
iteration but is too big when the iteration times become
larger. In contrast, the exponential threshold has a
variable (or dynamic) step. This dynamic step would be
fairly large at the beginning of an iteration and becomes
smaller and smaller with increasing iteration times,
which is consistent with the error-decay trend of the
POCS. Therefore, the exponential threshold is superior
to the traditional linear threshold and achieves a much
faster convergence.

Gao et al.16 suggest a different kind of exponential
threshold in reconstructing irregular seismic data. Their
exponential threshold is defined as

ei~exp i{1ð Þb½ �e0 (11)

with

b~
{1

I{1
ln

emax

emin

� �
(12)

being the attenuation factor, where i51, 2, …, I. Note
that the attenuation factor b is associated with the
maximum iteration number I; thus, one should provide
an estimate I at the beginning. In contrast, our scheme
does not need any pre-estimated parameter. Rewrite
equation (9) as

ei~aie0~exp i ln að Þe0 (13)

we see that our scheme is basically different from
equation (11) because of using completely different
attenuation factor.

For a possible range of emin[ 0:00005, 0:005½ � and
I521, 22, …, 100, the corresponding range of b
suggested by Gao et al.16 is about [0?053, 0?495], which
is far below our suggested range around 0?7 (e.g. from
0?5 to 0?8). However, our tests show that a too small
attenuation factor is harmful for the successful recon-
struction of both large gaps and local details. On the
other hand, we use a small initial error threshold e0 (e.g.
0?6–0?9), rather the big one suggested by Gao et al.,16 to
further reduce the total iteration numbers; that is, their
initial error threshold is bigger than ours (i.e. emax.e0).
In general, we suggest using small step of error threshold
as well as small initial error threshold. Thus, our scheme
can concentrate almost all iterations on the most urgent
part and can achieve a significant improvement after
each iteration. Therefore, our scheme can reconstruct
big gaps with much less iteration numbers compared
with that proposed by Gao et al.16

A hybrid scheme of the POCSzCG
The POCS has difficulty obtaining a perfect result with
fine image details. With the help of our exponential
threshold, it is still not able to recover all the details even
with properly selected steps and tremendous iterations.
That is, our exponential threshold is only helpful to
obtain the same results much quicker than the tradi-
tional linear threshold. To further restore the image
details, we have to use another method that is powerful
for high resolution restorations.

In non-local regularisation,20–22 an inpainting result
^
f

can be regarded as a quadratic minimisation problem as
following

^
f [arg min

f
Af {bk k2

zlJ fð Þ (14)

where A is the ill-conditioned linear operator, l is the
regularisation parameter and J(f) is the non-local
regularisation functional. We set A5W2lD, b5Wf
and l50?01, and use the discretised Sobolev norm22

JSob fð Þ~ +fk k2 (15)

where +f is the gradient of f, and D is the divergence
operator of the gradient of f.

We minimise equation (14) using the CG as following

r0~Wf0{Af0

d05r0

for i51, 2, …, I

ai~
ri{1k k2

Adi{1k k2

fi~fi{1zaidi{1

ri~ri{1{aiAdi{1

ci~
rik k2

ri{1k k2

di~rizcidi{1

end
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The CG is very popular in numerical optimisations,34

and is widely used in image restorations.24–26 The main
advantage of the CG is that it can minimise the objective
function with a limited number of iterations, which is
not bigger than the matrix rank. However, the non-local
regularisation solved by the CG, named as CG for

simplicity, is not good at reconstructing big area of
missing pixels. Therefore, we propose to first employ the
exponential-threshold POCS with very limited iterations
to recover the low frequency components that are
related to the macro image frame; then, we take this
result as the input of the CG; finally, we only perform
very limited iterations for the CG to recover the high
frequency components that are related to the image
details.

Numerical experiments
Figure 1a show an image of boy Yide. Figure 2b has
some randomly missing pixels and a big hole. Figures 1c
and d show inpainting results obtained by the traditional
linear-threshold POCS with 200 and 300 iterations,
respectively. Figures 1e and f shows inpainting results
obtained by the exponential-threshold POCS with 20
and 30 iterations, respectively. Obviously, the exponen-
tial-threshold POCS with 20 iterations obtains a good
result, while the traditional linear-threshold POCS with
200 iterations obtains a poor result. Therefore, the
exponential-threshold POCS converges much faster than
the traditional linear-threshold POCS.

Note that, we select 0?025T as the initial error
threshold for the traditional linear-threshold POCS,
where T~max =z f0ð Þj j is the maximum amplitude of
the spectrum. If we select a bigger initial threshold e0

(e.g. 0?05T), the inpainting result at 200 and 300
iterations would become much worse, since the residual
error is still very large at these two stages (see the curve

1 Comparison of inpainting results between the traditional linear-threshold POCS and the exponential-threshold POCS:

a original image; b an image with randomly missing pixels and a big hole; c the traditional linear-threshold POCS with

200 iterations; d the traditional linear-threshold POCS with 300 iterations; e the exponential-threshold POCS with 20

iterations; f the exponential-threshold POCS with 30 iterations. For the traditional linear-threshold POCS, the initial

threshold is e050?025T and the step d50?0001, where T~max =z f0ð Þj j is the maximum amplitude of the spectrum.

According to Fig. 2, the selected e0 would make the cutoff error acceptable within a relatively small iteration time. If

we select a bigger initial threshold e0 (e.g. 0?05T), the inpainting result at 200 and 300 iterations would become much

worse, since the residual error is still very large at these two stages (see curve ‘e’ in Fig. 2). If we select a bigger step

d (e.g. 0?0002), the inpainting result would also become worse, since the residual error is larger (see curves ‘c’ and ‘f’

in Fig. 2). For the exponential-threshold POCS, we select the initial threshold e050?5T and the factor a50?7 according

to Fig. 3

2 Error curves of the traditional linear-threshold POCS.

The images used are shown in Fig. 1a and b. The initial

threshold e0 and the step d are different for each curve.

Note that if we select e050?5T as the initial error

threshold, the iteration times will have a several-fold

increase
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‘e’ in Fig. 2). If we use e050?5T for the traditional linear-
threshold POCS, it will greatly increase the computa-
tional cost about 20 times. On the other hand, if we
select a bigger step d (e.g. 0?0002), the inpainting result
also becomes worse, since the final residual error is
larger (see curves ‘c’ and ‘f ’ in Fig. 2). In contrast, we
use e050?5T as the initial error threshold for the
exponential-threshold POCS, which is much larger than
that of the traditional linear-threshold POCS (i.e.
e050?025T); however, we do not see any independence
of the initial error threshold and the step, as shown in
Fig. 3.

Figure 2 shows the error curves of the traditional
linear-threshold POCS for different initial error thresh-
olds and steps. We see that the traditional linear-
threshold POCS is very sensitive and highly dependent
on the initial error threshold e0. In addition, a big step d
may make the algorithm divergent, but a small step with
a big error threshold means that there were too many
iterations. According to Fig. 2, we select the initial error

threshold as e050?025T and the step as d50?0001 to
make the computational cost of the traditional linear-
threshold POCS comparative to that of the exponential-
threshold POCS. However, the initial error threshold
is difficult to determine in advance in practical
applications.

Figure 3 shows that the exponential-threshold POCS
is superior to the traditional linear-threshold POCS on
these two aspects: it is not sensitive to the initial error
threshold e0 or to the factor a. In addition, the error
curves stop decreasing within 50 iterations for most
factors listed. According to Figs. 3, we select the initial
error threshold as e050?5T and the factor as a50?7 since
they allow the exponential-threshold POCS to have a
reasonable tradeoff between the convergence and the
restoration accuracy. Figure 4 further shows that the
exponential-threshold POCS has smaller residual error
compared with the traditional linear-threshold POCS.
Therefore, we only show results from the exponential-
threshold POCS since it is superior to the traditional
linear-threshold POCS in various important aspects,
such as the computational cost, the robustness and the
convergence.

Figure 5 shows six typical parameter groups sug-
gested by Gao et al..16 The convergence of Gao et al.16 is
fast when the error threshold emin50?00005, but the
residual error is very big; the residual error of Gao
et al.16 is small when the error threshold emin50?005, but
the convergence is relatively slow. In addition, either big
(e.g. 100 or 200) or small (i.e. 20) iteration number I does
not show better accuracy than our scheme (e050?5T and
a50?7). Figure 5 shows that our scheme is superior to
Gao et al.16 since our scheme has a similar convergence
but a smaller residual error.

However, both the traditional linear-threshold POCS
and the exponential-threshold POCS are not able to
obtain high resolution results, as shown in Fig. 1, even

3 Error curves of the exponential-threshold POCS. The

images used are shown in Fig. 1a and b. The initial

threshold e050?5T, which is much looser than that (e.g.

0?025T) for the traditional linear-threshold POCS. The

factor a is different for each curve

4 Comparison of error curves between the traditional lin-

ear-threshold POCS and the exponential-threshold

POCS. These three curves are from Fig. 2 and 3

5 Comparison of error curves between Gao et al.’s expo-

nential-threshold POCS and our exponential-threshold

POCS. The initial error threshold used in Gao et al.16 is

always emax51?0T; the minimum error threshold is set

to be emin50?005T and emin50?00005T, respectively; and

the iteration number I is set to be 20, 100 and 200,

respectively. The two control parameters used in our

scheme is set to be e050?5T and a50?7, respectively.

The solid lines show the results of Gao et al.16 and the

dashed line shows the result of our scheme
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though we employ many more iterations (the results are
not shown here because they are the same to Fig. 1d and
f, respectively). This shortcoming of the POCS can also

be seen from the large residual errors shown in Figs. 2
and 3. Thus, we have to recover the image details using
other methods (e.g. the CG) in order to overcome this
shortcoming.

Figures 6a and b show the inpainting results of the
CG at 20 and 100 iterations, respectively. Obviously, the
CG can obtain a much higher resolution compared with
the POCS. However, the big hole is not well recovered
by the CG even at 100 iterations. Thus, the combination
of the exponential-threshold POCS and the CG is
necessary and would take advantage of the benefits of
both methods. Figures 6c and d show the results
obtained by the hybrid method. Clearly, only 20
iterations of the exponential-threshold POCS and 20
iterations of the CG obtain a much superior result than
either method alone. For example, as shown in Fig. 7,
we need more than 120 iterations to obtain a similar
result if we only use the CG. Figure 7 also shows that
the residual error of the hybrid method is only slightly
smaller than that of the POCS, which is easy to be
considered as an unapparent improvement; however,
these ‘small’ improvements shown in error curve mostly
contribute to the improvements of the image details,
which actually have small amplitude variations but have
very important visual effect implications.

Figure 8 shows another example for the application of
image inpainting. We hope to remove the characters
carved in the stone. We regard all kinds of characters (i.e.
English, Tibetan and Chinese) as missing areas and mark
them as invalid pixels. Figure 9 shows the local details

6 Comparison of inpainting results between the CG and the hybrid method (POCSzCG) of the exponential-threshold

POCS plus the CG: a the CG with 20 iterations; b the CG with 100 iterations; c the POCSzCG with 20 iterations of

the exponential-threshold POCS and then 20 iterations of the CG; d the POCSzCG with 20 iterations of exponential-

threshold POCS and then 30 iterations of the CG. For the exponential-threshold POCS, the initial threshold is e050?5T

and the factor a50?7

7 Comparison of error curves between the CG, the expo-

nential-threshold POCS and the hybrid method

(POCSzCG). The curve of the exponential-threshold

POCS is from Fig. 3. The residual error of the hybrid

method is only slightly smaller than that of the POCS;

however, these ‘small’ improvements are mostly con-

tributed by the improvements of the image details,

which actually have small amplitude variations that

have very important visual-effect consequences
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within two typical areas. Again, the exponential-thresh-
old POCS at 20 iterations can well recover the low
frequency components except the details, and the CG at
20 iterations can well recover the details except the big
holes. In contrast, the hybrid method can recover both
the details and the low frequency components perfectly by
combining these two methods.

Figure 10 shows another more complex example,
which contains several possible missing features, such as
characters, big holes, random dots and bold curves.
Figures 10c and d are obtained by the CG with 20
iterations and the exponential-threshold POCS with 20
iterations, respectively. The exponential-threshold POCS
shows to be powerful in recovering the background

8 Comparison of inpainting results between the CG, the exponential-threshold POCS and the hybrid method

(POCSzCG): a original image; b the exponential-threshold POCS with 20 iterations of the CG; c the CG with 20 itera-

tions; d the POCSzCG with 20 iterations for each part. For the exponential-threshold POCS, the initial threshold is

e050?5T and the factor a50?7

9 Local details within two areas of Fig. 8. a–d and e–h correspond to Fig. 8a–d, respectively. The exponential-threshold

POCS at 20 iterations can recover the low-frequency components except the details well, and the CG at 20 iterations

can recover the details except the big holes well. In contrast, the hybrid method can recover both the details and the

low-frequency components perfectly by combining these two methods
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within a limited number of iterations; and the CG shows
to be strong in recovering the details if the big holes are
ignored. As an optimal combination, the hybrid method
is shown to be superior to either of these two methods. Of
course, we can add more iterations of the CG for the
hybrid method to refine the detailed structures, as shown
in Figures 10e and f.

Comparing Figs. 6, 8 and 10, we find that the
suggested parameters (e050?5T and a50?7) and the
iteration times (20 times) are generally feasible for most
cases, although these parameters are somewhat ineffi-
cient especially for the most severe case shown in
Fig. 10. Nevertheless, only a small increase of the
iteration times for the CG will significantly improve

10 Comparison of inpainting results between the CG, the exponential-threshold POCS and the hybrid method

(POCSzCG): a original image; b an image with randomly missing pixels, two big holes, bold lines and various-size

characters; c the CG with 20 iterations; d the exponential-threshold POCS with 20 iterations; e the POCSzCG with

20 iterations of exponential-threshold POCS and then 20 iterations of the CG; f the POCSzCG with 20 iterations of

exponential-threshold POCS and then 80 iterations of the CG. For the exponential-threshold POCS, the initial thresh-

old is e050?5T and the factor a50?7
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the inpainting results, without changing the other
parameters, as shown in Figs. 6d and 10f.

We examine the running time via a single thread on a
personal computer with a CPU Intel Core i5 M560
(2?67 GHz). We use the Fourier transforms functions
fft2 and ifft2 included in Matlab 7. Figure 11 shows the
time consumptions of the exponential-threshold POCS
and the CG. Surprisingly, we see that they have almost
the same computational efficiency since the time
consumptions for any given image size are similar to
each other. Therefore, it is easy to evaluate the hybrid
method by purely counting the total iteration times.

Discussion
The computational efficiency and the resolution of the
inpainting are greatly improved by means of the
exponential-convergence POCS plus the CG. We can
further employ the graphics processing units to accel-
erate the whole algorithm and can obtain a speedup
ratio up to several tens of times.35,36 As a powerful and
computationally effective method, it is attractive for
solving the inpainting problems for both large still
images and long videos.31,37

We can further use the preconditioning technique to
obtain a faster convergence for the CG. We only test a
fixed factor a of the exponential threshold in the text.
We also consider using a varying factor in order to
obtain a much higher convergence and to save more
computational cost for the POCS. If the contiguous
missing areas are relatively large, we could use
segmentation before inpainting.38,39 Although the pro-
posed method is very attractive both in computational
cost and in reconstruction accuracy, it is not able to

recover the textured regions at this stage. Some recent
approaches can be used40 for this purpose.

Conclusion
We have proposed a hybrid approach for filling-in
regions of missing pixels in still images. This approach
combines the advantages of the POCS in reconstructing
the low frequency components with the advantages of
the CG in reconstructing the high frequency compo-
nents. The convergence of the POCS is greatly improved
by using an exponential error threshold compared with
the traditional linear one. This exponential-threshold
POCS allows us to iterate only 20 times to quickly
recover the low frequency components. The resulting
image is a fairly good initial input for the CG and allows
the CG to iterate only twenty times to rapidly reduce
those small residuals. A number of numerical results
show that the proposed hybrid approach has a lower
computational cost than the CG and has a higher
resolution than the POCS.
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