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Abstract New constraints on the uplift history of the Liupan Shan can improve our understanding of the
tectonic consequences of the collision of the Indian and Asian plates, including the timing of the uplift of the
Tibetan Plateau. Here we present a detailed magnetostratigraphy for the Kaimengou section near the
piedmont of the Liupan Shan, which reveals that it spans the interval from 19.8 to 12.8 Myr. Together with
the results of measurements of the anisotropy of magnetic susceptibility, rock magnetic measurements
show that the anisotropy of magnetic susceptibility is dominated by antiferromagnetic hematite and/or
paramagnetic minerals, both of which are mainly controlled by the preferred crystallographic orientation,
which can be used to record the tectonic history. During 19.5-14.0 Myr, the maximum principal axis (Kimax)
showed a pronounced N-S orientation and Ky, began to exhibit a girdled distribution in an E-W direction,
indicating a slight to moderate tectonic strain in an E-W direction. And the strain can be reconfirmed be
the shape parameter (T). We attribute the strain to far-field influence by the collision of the Indian and Asian
plates. We also present a tentative conceptual model, which explains how the E-W compression fits within
the general tectonic scenario for the uplift of the Tibetan Plateau.

1. Introduction

The collision of the Indian and Asian plates is one of the most significant tectonic events in the
Cenozoic and is closely related to the uplift of the Tibetan Plateau, with major and geographically wide-
spread paleoenvironmental consequences (Fang et al., 2002; Lin et al.,, 2010; Mulch & Chamberlain,
2006). The northeastern edge of the Tibetan Plateau, including from east to west the Liupan Shan,
Haiyuan Fault, Qilian Orogenic Belt, and Altyn Tagh Fault, was substantially influenced by the collision
(Figure 1a; Burchfiel et al., 1991; Li et al., 2013; Li et al., 2016; Yan et al., 2006; Zhang et al., 1991).
Consequently, detailed knowledge of the uplift of the Liupan Shan is important for understanding the uplift
history of the Tibetan Plateau, as well as far-field deformation induced by the collision of the Indian and
Asian plates.

A substantial amount of research has focused on the uplift of the Liupan Shan using apatite fission-track
(AFT) dating (Gao et al., 2000; Lin et al., 2010; Lin et al., 2011; Zheng et al., 2006), magnetostratigraphy
and morphostratigraphy (Liu et al., 2009; Song, Fang, Li, An, & Miao, 2001), Global Positioning System
(GPS) measurements (Li et al., 2016; Li, Shan et al., 2017; Wang et al., 2001), electron spin resonance dating
(Li et al., 2013), and remote sensing and digital elevation model technology (Shi et al., 2006). Some have
argued that mountain uplift began during the Quaternary (Burchfiel et al., 1991; Yang et al., 2002); however,
others have proposed that the initiation of uplift occurred at ~8.0 Ma and subsequently intensified at ~5.3
and 3.8 Ma (Ding et al., 2004; Lin et al., 2010; Shen et al., 2001; Song, Fang, Li, An, & Miao, 2001; Song et al.,
2005; Song et al., 2000; Song, Fang, Li, An, & Yang, 2001; Zhang et al., 2006; Zheng et al., 2006). Lin et al.
(2011) suggested that the far-field influence of the collision of the Indian and Asian plates reached the
Liupan Shan during the early Eocene and that this influence was enhanced in the early Miocene, late
Miocene, and the Quaternary, which is supported by several other studies (Gao et al., 2000; Liu et al.,
2009; Lin et al., 2011; Li et al., 2013). However, the timing of the uplift remains controversial, moreover, most
of the current research methods used are more useful for detecting and characterizing major tectonic strain,
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Figure 1. (a) Tectonic map of the northeastern margin of Tibetan Plateau, compiled from Burchfiel et al. (1991), Gao et al. (2013), Gaudemer et al. (1995), Taylor
and Yin (2009), Yin et al. (2008), and Zuza et al. (2016). The white arrows indicate the movements of the Indian plate, central Tibet, and northeastern-most Tibet,
relative to Siberia. The red solid circle is the study area (Kaimengou), in the northeastern margin of the Tibetan Plateau. Left-silp strike-slip fault: ATF, Altyn
Tagh fault; TJF, Tianjing fault; KLF, Kunlun fault; HYF, Haiyuan fault; GZF, Ganzi fault; QLF, Qinling fault. RRF, Red River fault; XSH-XJFS, Xiangshuihe-
Xiaojiang fault system. Right-silp strike-slip fault: ESF, Elashan fault. Thrust fault: QTTB, Qimen Tagh thrust belt; QLS-NS TB, Qilian Shan-Nan Shan thrust belt;
LPSTB, Liupan Shan thrust belt. Normal fault: YCGS, Yinchuan graben system. Suture: I-YL SZ, Indus-Yalu suture zone; BG-NJ SZ, Bangong-Nujiang suture
zone; JS SZ, Jinsha suture zone; NQLSZ, North Qinling suture zone; QLS, Qilian suture; KL-SQLSZ, Kunlun-South Qinling suture zone. The yellow solid circles are
the study areas, which had done by previous workers. TS, Tian Shan; WTB, The west Tarim basin; ATF, Althn Tagh fault; QLS, Qilian Shan; KLS, Kunlun Shan;
GB, Guide Basin; QL, Qin Ling; ST, Southern Tibet. (b) The geologic map of the study area compiled from a public version freely available online. The scale of
the map is 1:1000000. The URL is http://ngac.org.cn/Document/Map.aspx?MapIld=EC7E1A7A7AD81954E0430100007F182E. The red solid circle indicates the
study site. (c) Field photograph of the study area. (d) Geological cross section of the sedimentary sequence.
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while weak deformation has been ignored or misinterpreted. Clearly, more evidence is needed, especially of
weak tectonic strain.

The anisotropy of magnetic susceptibility (AMS) is valuable for tracing tectonic strain, especially in weakly
deformed sediments: it can record the initial deformation and successfully be used in the case of extremely
weak strain fields (Cifelli et al., 2009; Larrasoafia et al., 2011; Li, Shan et al., 2017; Parés et al., 1999). The
main principles of the use of AMS to characterize tectonic strain can be summarized as follows: (1) In an
unstrained environment, the original AMS ellipsoid is characterized by an oblate shape (i.e.,
Kinax ® Kint > Kpin)- The minimum axis of the AMS ellipsoid (K, ) is perpendicular to the bedding and con-
centrated in the projection center, while the maximum axis of the AMS ellipsoid (Kyax) is dispersed around
the projection plane (Borradaile & Henry, 1997; Lagroix & Banerjee, 2002; Lagroix & Banerjee, 2004). (2) The
AMS ellipsoid is transformed from oblate to triaxial (i.e., Kyax & King & Knin) When it experiences a weak
strain. Although K, remains perpendicular to the bedding and is concentrated in the projection center,
Kinax tends to have a clustered distribution perpendicular to the direction of the compression (Larrasoafia
et al., 2004; Parés, 2004. (3) As the strain increases, the AMS ellipsoid ultimately becomes prolate (i.e.,
Kinax > Kint ® Knin), Kmin values begin to deviate from the center of the projection plane and spread out
along the direction of the strain and Kp.x values become more tightly clustered (Borradaile, 2001;
Maffione et al., 2015; Soto et al., 2009; Tang et al., 2012).

Many previous studies have shown that as is the case of Quaternary loess, the pre-Quaternary red clay in the
west of the Liupan Shan is mainly of eolian origin and can be traced back to about 25 Ma (Gao et al., 2014;
Guo et al., 2002; Qiang et al., 2011; Sun et al., 2010; Zhang et al., 2011). Thus, the red clay is an important
source of information for reconstructing the uplift of the Liupan Shan since the Miocene. Here we present
the results of a detailed study of the magnetostratigraphy and magnetic fabric of the Kaimengou section,
in Zhuanglang County, which we use to reconstruct the uplift history of the Liupan Shan and to further
consider the far-reaching influence of the collision of the Indian and Asian plates.

2. Geological Setting

The Liupan Shan is a north-south trending mountain range located in the central Chinese Loess Plateau and
divides the plateau into two parts; thus, the Liupan Shan is a major geological and geographical boundary
(Ao et al., 2016). In terms of the tectonic configuration of the region, the Ordos Block is in the east, the
Longzhong Basin is in the west, the Qilian-Haiyuan Fold Belt is in the north, and the Qinling Fold Belt is
in the south (Figure 1a). The Liupan Shan is connected to the Haiyuan Fault and the Qilian Orogenic
Belt, and finally, it is in conjunction with the Altyn Fault; it is regarded as the northeasternmost boundary
of the Tibetan Plateau (Figure 1a; Li et al., 2013; Li, Shan et al. (2017); Song, Fang, Li, An, & Miao, 2001; Song
et al., 2005; Zheng et al., 2006).

The Kaimengou section (106.13°E, 35.37°N) is in Liufang village, Zhuanglang County, Gansu Province. It is
located near the piedmont of the Liupan Shan, at an altitude of 1,840 m, and is strongly influenced by the
adjacent mountains; hence, the red clay deposits of the area are well suited to reconstruct the tectonic strain
history. The red clay sequence is ~168 m thick, and it does not reach bedrock at the base. As is the case of
other red clay sections, the sediments are of primary eolian origin, with water-lain red clay confined to
the base and top of the section. The section can be divided into five intervals, as follows (Figure 2): (i)
153-168 m: Water-lain red clay with horizontal laminations, alternating with typical unstratified eolian
red clay. (ii) 145-153 m: This interval contains two distinct green layers, mainly grayish-green mudstone,
with obvious interbedded disturbed layers, interpreted as bog facies. Within these layers numerous mammal
fossils have been discovered, which were identified by Shiqi Wang (Institute of Vertebrate Paleontology and
Paleoanthropology, Chinese Academy of Sciences). They include Turcocerus sp. (Deng et al., 2013), rhino-
ceros, elephant, and several ruminants. And Deng et al. (2013) found that Turcocerus sp. first appeared in
the fossil record at ~16.2 Ma and disappeared at about ~11.6 Ma can be used as a tie point for the correlations
between the polarity sequence in our section and the geomagnetic polarity timescale (GPTS; Ogg et al.,
2016). (iii) 123-145 m: This interval is dominated by eolian deposits, which are occasionally interbedded
with minor amounts of water-lain red clay. (iv) 8-123 m: Typical eolian red clay, with no horizontal bedding
and with no evidence of fluvial influences; a sand layer occurs at 45 m. (v) 0-8 m: The basal part of the
section consists of fluvially reworked red clay layers alternating with typical eolian red clay.
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Figure 2. Lithology column for the Kaimengou section and photographs of major lithologies and fossil discoveries. The red clay sequence is 168 m thick. The sedi-
ments of the entire section are of primary eolian origin; however, water-lain red clay occurs at the top and bottom of the section. (a) Water-lain red clay with
horizontal laminations. (b) Predominantly grayish-green mudstone with distinct interbedded disturbed layers, which may be bog facies. (c) Inferior cheek teeth of
Turcocerus sp. (lateral view). (d) Inferior cheek teeth of Turcocerus sp. (crown view). (e) elephant. (f) rhinoceros.

3. Materials and Methods

Depending on the sediment outcrop quality, samples were collected as oriented hand samples, and we col-
lected 1,680 oriented block samples at a 10-cm interval throughout the entire section. Each oriented hand
sample was cut into four cubic (2-cm edge) specimens. The specimens were transported to and analyzed
at the Paleomagnetism and Geochronology Laboratory of the Institute of Geology and Geophysics,
Chinese Academy of Sciences.

3.1. Rock Magnetic Properties

To determine the main magnetic carrier minerals, six representative samples were selected for measure-
ments of temperature-dependent magnetic susceptibility (y-T), hysteresis loops, and acquisition and back-
field demagnetization of isothermal remanent magnetization (IRM). y-T curves were measured with an
AGICO KLY-4 Kappabridge in a magnetic field of 200 A/m, at a frequency of 976 Hz; the heating rate
was ~12 °C/min. To prevent oxidation of the samples, the measurements were conducted in an argon atmo-
sphere. Hysteresis loops and acquisition/demagnetization of IRM were measured with a vibrating sample
magnetometer (Princeton Measurements, MicroMag 3900), with a sensitivity of 5 X 1071 Am?
Magnetizations were imparted and demagnetized within the field range of +1.5 T.

3.2. Thermal Demagnetization of Natural Remanent Magnetization

Initially, we selected 840 specimens at an interval of 20 cm for natural remanent magnetization (NRM)
demagnetization experiments, and subsequently, we increased the number of samples for the intervals in
which magnetic polarity reversals were more frequent. A total of 1,057 specimens were measured.
Stepwise thermal demagnetization of the NRM was conducted using an ASC TD-48 thermal demagnetizer,
with a residual field of <30 nT. Remanences were measured with a 2G Enterprises 760 three-axis cryogenic
magnetometer. Both the demagnetizer and the magnetometer were housed in a magnetically shielded space
(<300 nT). The heating steps used for thermal demagnetization of the NRM comprised 23 steps, from 25 to
680 °C, with increments ranging from 10 to 55 °C. All the evaluations were processed using the PaleoMag
software developed by Craig H. Jones and Joya Tetreault.
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3.3. Anisotropy of Magnetic Susceptibility

The AMS of all 1057 oriented specimens were measured using an AGICO KLY-3S Kappabridge susceptibility
meter (AGICO Inc.) with an internal magnetic field strength of 300 A/m with a frequency of 976 Hz and a
sensitivity of 2.0 x 10™® SI. All the evaluations and plots were produced with Stereonet 10.0 software devel-
oped by Nestor Cardozo and Richard Allmendinger.

4. Results

4.1. Rock Magnetism

4.1.1. Temperature Dependence of Magnetic Susceptibility

The temperature dependence of magnetic susceptibility (y-T curves) is useful for determining the magnetic
mineralogy of specimens (Dunlop & Ozdemir, 2001; Tang et al., 2012; Tang et al., 2015). The heating curves
(Figure 3a) show a steady increase in susceptibility at temperatures below 300 °C, which may indicate the
presence of ferrimagnetic grains with sizes near the superparamagnetic/single domain boundary, and which
are gradually unblocked during the heating process (Deng et al., 2006; Zhao et al., 2017). A decrease in mag-
netic susceptibility occurs within the temperature interval of 300-450 °C, which results from the conversion
of maghemite to hematite (yFe,O; — aFe,05; Li, Ma et al., 2017; Sun et al., 2011). The heating curves of the
samples from the depths of 167.7, 130.3, and 22.1 m show a hump between 500 and 520 °C, which may reflect
the neoformation of strongly magnetic minerals, or the Hopkinson effect for single domain magnetite (single
domain and/or quasi-single domain magnetite; Deng, 2008; Deng et al., 2002; Li, Ma et al., 2017). All the
curves show a sharp decrease near 580 °C, the Curie temperature of magnetite, indicating that magnetite
dominates the magnetic susceptibility (Li, Yue et al., 2014; Li, Ma et al., 2017; Zhao et al., 2017). In addition,
there is a minor final decay of the magnetic susceptibility in the heating curves above 585 °C, suggesting the
presence of hematite (Tang et al., 2015). In the cooling curves, the magnetic susceptibility of all the samples
is substantially higher, indicating the neoformation of magnetite during heating (Li, Yue et al., 2014).
4.1.2. IRM Acquisition Curves

To further characterize the magnetic mineralogy of the samples, especially the high-coercivity component,
IRM acquisition curves of six typical samples were measured (Figure 3b; Ge et al., 2014; Xiong et al., 2017).
All the samples acquired more than 75% of their IRM; st intensity at 0.3 T, and all the remanent magnetiza-
tion was removed after exposure to reversed fields of <60 nT, indicating the dominance of low-coercivity
minerals. However, the remanence remained unsaturated even in fields up to the initial saturating field,
indicating the presence of high-coercivity minerals (Li, Ma et al., 2017; Sun et al., 2011; Tang et al., 2015).
4.1.3. Hysteresis Loops

Hysteresis loops provide information about the type and domain state of magnetic minerals (Figure 3c;
Xiong et al., 2017). The magnetization of all the six selected samples reached more than 84% of the saturation
magnetization at 0.3 T, confirming the dominance of low-coercivity minerals; however, the loops remained
open even at 1 T, again confirming the presence of a high-coercivity component. In addition, the loops are all
wasp-waisted (narrow in the center and wider above and below), indicating the coexistence of both low- and
high-coercivity minerals (Ge et al., 2014; Li, Yue et al., 2014; Li, Ma et al., 2017; Sun et al., 2011; Tang
et al., 2015).

4.2. Thermal Demagnetization of NRM

The thermal demagnetization results were analyzed by principal components analyses (Kirschvink, 1980),
and we ensured that a minimum of four consecutive demagnetization steps above 400 °C (typically 7-10)
were used to determine the characteristic remanent magnetization (ChRM) direction. The maximum angu-
lar deviation was less than 15° (for 80% of the samples, less than 10°). A total of 796 samples out of the
original 1057 (75%) yielded stable ChRM directions. The demagnetization results of representative samples
are illustrated using orthogonal diagrams (Figure 4; Zijderveld, 1967). The viscous component of magnetiza-
tion was removed at temperatures up to 350 °C. The results in Figures 4c-4e show that as the temperature
approached 580 °C, the remanence was reduced by >90%, indicating that magnetite is the dominant carrier
of the ChRM. However, Figures 4a, 4b, 4c, and 4f show that the remanence was not removed completely,
even at 680 °C. Nevertheless, there were no changes in the magnetization direction at temperatures above
and below 580 °C, suggesting that both magnetite and hematite are the carriers of the ChRM, with both
having the same ChRM direction.
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Figure 3. (a) Low-field temperature dependence of magnetic susceptibility (y-T) for selected samples. (b) Isothermal remanent magnetization acquisition curves for

selected samples. (c) Hysteresis loops for selected samples.
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s In-situ s Tilt-adjusted
Thickness Ageinterval  Dip/dip n N/R Dn/Dr INn/IR KN/KR 95N /0osr
interval/m /Ma angle
133-168 12.8-14.1 25177 170 112/58 26.1/177.1 41.5/-56.6 7/6.5 6.8/9.9
88-133 14.1-16.7 233/7 235 114/121 11.7/189.7 53.6/-50 9.3/7.2 5.7/6.4
33-88 16.7-18.0 318/8 227 77/150 338.8/178.4 57.6/-49.8 11.1/7.3 6.3/5.7
13-33 18.0-19..3 30419 94 78/16 2.1/198.1 45.4/-36.9 10.1/9.6 6.6/16
0-13 19.3-19.8 316/7 70 62/8 3.4/190.2 35/-56.6 11.8/9.8 6.8/22.9
0-168 12.8-19.8 796 443/353 7.8/183.6 48.2/-50.7 7.7/7.1 3.2/3.8

Figure 5. Equal area stereographic projections of the characteristic remanent magnetization directions of the 796 samples
from the Kaimengou section, shown in geographic (in situ) and stratigraphic (tilt-corrected) coordinates. The green
squares and the blue triangles represent normal and reversed inclinations, respectively. The red circles represent the mean
direction of the normal and reversed polarity components. The results pass a class C reversal test at 95% confidence,
using the PaleoMag software developed by Craig H. Jones and Joya Tetreault (McFadden & McElhinny, 1990). The table
was the mean directions of characteristic remanent magnetization (tilt-corrected).

Before tilt correction, the mean normal and reversed polarity directions are Dy = 14.4°, Iy = 48.4° (N = 444,
xn = 7.1, atgsy = 2.7), and Dr = 190°, [z = —51.2° (Ng = 352, kg = 6.8, agsr = 3.1), respectively. After tilt
correction, Dy = 7.5°, Iy = 48.5° (Ny = 444, x5y = 7.6, dgsy = 2.6), and Dg = 183.1°, Iz = —51.1°
(Ng =352, %g = 6.8, ttgsg = 3.1). The mean tilt-corrected inclination (50°) is within 5° of the mean inclination
expected for the sample location, indicating only a minor inclination error (Besse & Courtillot, 2003). In
addition, the results pass a class C reversals test, using the PaleoMag software developed by Craig H.
Jones and Joya Tetreault (Figure 5; McFadden & McElhinny, 1990). Virtual geomagnetic pole latitudes were
calculated from the ChRM vector parameters (declination D and inclination I) and the latitude and longi-
tude of the sampling location (Tauxe et al., 2010). After constructing the magnetic polarity sequence from
the virtual geomagnetic pole latitudes (Figure 6), a total of 16 normal and 17 reversed polarity zones were
identified. The magnetostratigraphy was provisionally assessed using the magnetic susceptibility results of
Guo et al. (2002) for the Qin'an sequence and the mammalian fossil assemblage (Turcocerus sp.) within
the first green layer from the study section, which is dated to 16.2-11.6 Myr (Deng et al., 2013). Then, two
possible correlations to the GPTS (our preferred correlation versus an alternative; Figure 7) have been pro-
posed. Comparison of the two correlations. The alternative indicates an extremely high deposition rate from
73 to 88 m, and it is not well correlated with C5Dr.1n. Our preferred chronology is more reasonable, and with
this correlation the mean sediment accumulation rate is 2.43 cm/kyr, which is consistent with the results of
Guo et al. (2002) for the Qin'an section (1.6 cm/kyr) and with those of Qiang et al. (2011) for the Zhuanglang
section (2.9 cm/kyr). The magnetostratigraphy is well correlated with the GPTS (Ogg et al., 2016) from
C5Ar.3r-Cér (Figure 6). Based on the correlation with the GPTS and extrapolation of the sediment accumu-
lation rate, the ages of the top and bottom of the profile are 12.8 and 19.8 Ma, respectively.

4.3. Anisotropy of Magnetic Susceptibility

Stereographic projections of the AMS principal axes in geographic and in stratigraphic coordinates are
illustrated in Figure 8. The tilt-corrected maximum susceptibility axis (Kiax) directions are clustered in
the N-S direction, and the K,,,;,, directions are distributed in an E-W direction.

In contrast to the ChRM characteristics, the AMS of the section is dominated by anisotropic antiferromag-
netic hematite and/or paramagnetic clays. The reasons for this conclusion are as follows: (1) The SIRM
ranges from 1.5 to 2.9 X 10~ °Am?/kg (Figure 8c), which suggests that the concentration of magnetite can
be ignored (Hrouda & Kahan, 1991; Tang et al., 2012); (2) the value of K,,, is independent with the P}, indi-
cating that the AMS of the section is not dominated by anisotropic magnetite (Figure 8d); and (3) the
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Figure 6. (left column) Lithology, bulk magnetic susceptibility, and magnetostratigraphy of the Kaimengou section;
(middle column) geomagnetic polarity timescale (GPTS; Ogg et al., 2016); and (right column) magnetostratigraphy and
bulk magnetic susceptibility of the Qin'an section (Guo et al., 2002). Fossils of Turcocerus sp. were discovered in the green
layer (blue shaded layer in Figure 6), indicating an age of 16.2-11.6 Myr (Deng et al., 2013). The bulk magnetic
susceptibility record of the Kaimengou section is well correlated with that of the Qin'an section (the pink shaded layer),
and the magnetostratigraphy is well correlated with the GPTS from C5Ar.3r-Cé6r (Ogg et al., 2016). The estimated ages of
the top and bottom of the profile are 12.8 and 19.8 Ma, respectively.

volume susceptibility record (Figure 9) indicates a minor ferromagnetic contribution to the bulk
susceptibility (<0.1%; Hrouda & Kahan, 1991; Huang et al., 2006; Lu, Wang, & Meng, 2014). These
characteristics indicate that the AMS is dominated by anisotropic hematite and/or clay minerals, the
preferred crystallographic orientation of which can be used to record the tectonic history (Borradaile &
Henry, 1997; Parés, 2004).

Lithostratigraphy, bulk magnetic susceptibility (K,,), the median diameter (D50), corrected anisotropy
degree (P)), the shape parameter (T), and the inclinations of the minimum principal axis of the AMS
ellipsoids (Inc-Kpin), and the magnetostratigraphic results for the study section are shown in Figure 9.
The bulk susceptibility ranges from 94 to 1,207 uSI with an average of 412 uSI. Based on the changes in
the shape of the AMS ellipsoid and the K, inclination, the section can be divided into five intervals
(Figure 9). In intervals (i) and (v) (with yellow shadow), almost all the values of the shape parameter (T)
are >0° and the inclinations of the minimum principal axis of the AMS ellipsoids (Inc-Kyy,;,) are >70°. In
intervals (ii), (iii), and (iv) (with blue and purple shadow), the shape parameter (T) is <0°, and some values
of Inc-Kpin are <70°, especially in intervals (ii) and (iv) (with purple shadow). These features will be dis-
cussed in detail in section 5.2.

5. Discussion
5.1. Interpretation for the AMS Fabrics

At first sight in Figure 9, it appears that the changes in the AMS fabrics are related to lithology. This is
because more prolate AMS fabrics, with deviated K,;, directions, appear to be very well correlated with
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Figure 7. Comparison of two possible correlations to the geomagnetic polarity timescale (GPTS; Ogg et al., 2016; our pre-
ferred correlation versus an alternative correlation). (a) Present-day stratigraphic thickness versus age. (b) Sediment-
accumulation rates (using present-day thicknesses) versus age. The alternative correlation indicates an extremely high
deposition rate from 73 to 88 m, and it is not well correlated with C5Dr.1n. With our preferred correlation, the mean
sediment accumulation rate is 2.43 cm/kyr, which is consistent with the results of Guo et al. (2002) for the Qin'an section
(1.6 cm/kyr) and with those of Qiang et al. (2011) for the Zhuanglang section (2.9 cm/kyr).
the occurrence of primary eolian sediments. However, this is refuted by the following points. (i) In
Figure 9, the pattern of more oblate AMS fabrics, with original K,;, directions, within intervals of
water-lain sediments, is not applicable to the whole section; an example is the interval from 135 to
145 m, which is dominated by eolian deposits, if the AMS fabrics are controlled by changes in
lithology, the magnetic susceptibility ellipsoid should be prolate, with K,;, beginning to deviate from
the bedding, but this is contrary to what is observed. In addition, the pattern is not applicable to the
interval from 7 to 12 m. (ii) Although the magnetic anisotropy can be influenced by the depositional
regime, the increase in slope or current can lead to an offset of the K, axes from vertical (Antoine
et al., 2014; Taylor & Lagroix, 2015). But combine with the shape parameter (7) in Figure 9. During
the interval from 18.5 to 14 Myr, the shape parameter (T) is <0°, indicating the AMS ellipsoid becomes
WU ET AL. 1348



~1
AGU

100

ADVANCING EARTH
'AND SPACE SCiENCE

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007944

u 5 -
N=413, Dg=3.4°, ®
Ig=5.1°, a99=1.2

N=461, Dg=3",
1g=3.2° a99=1.2

Inc-Kmin<70° . 22%

L/
o 0e % ° 3

InC.-Kmin'<70o 3 260/(:

*o® e
)

N=1095, Dg=83.8°,
1g=84.7° a99=1.5

N=1095, Dg=359.4°,
1g=88.1° a99=1.5

N=682, Dg=183.6°,

n
my N=034, Dg=183.6°,
1g=5.7° 099=0.8

a® lg:.?i", a99=0.8
g

IRM, 10°Am*/kg
[\
L |

Corrected anisotropy P,

— 499m
— 22.Im

0 L B S B S B — L e e A A

0 0.3 0.6 0.9 12 L5 0 300 600 900 1200 1500
Field, T K, uSI

Figure 8. Stereographic projections of the anisotropy of magnetic susceptibility principal axes, including maximum
(Kmax) and minimum (Kyyjp,) directions in (a) geographic and (b) stratigraphic coordinates. The black boxes and the
red circles represent the K, ,x and Ky, axes, and the green and blue solid circles represent their respective mean values.
The black circles show the number of samples whose inclinations of the minimum principal axis is <70° (the percentage of
the samples in which K,j,, deviated from the bedding plane). (c) Isothermal remanent magnetization acquisition
curves for selected samples shown in Figure 3. (d) Mean magnetic susceptibility (Ky,) versus corrected anisotropy (Pj).

prolate, a strain happened during the interval (Parés, 2004). It is the strain not lithology causing the
changes in the AMS fabrics during this period. (iii) Although there are some water lain red clay
confined to the base and top of the section, the changes in the lithology within the section are very
small (see D50 in Figure 9).

In the red clay sediments of the Chinese Loess Plateau, it is evident that the AMS orientation can be influ-
enced by wind direction (Gong et al., 2015; Thistlewood & Sun, 1991; Zhang et al., 2010). In Figure 8, the
direction of the K,,x may indicate that a north-south wind (the winter monsoon) played a major role in
the air circulation during early-middle Miocene. What is more, the distribution of K,,x may become more
tightly clustered, reinforced by a tectonic strain in W-E direction.

However, the shape parameter (T) in Figure 9 shows that almost all the AMS ellipsoid has become prolate
(T < 0°) during the interval from 18.5 to 14 Myr; we can confirm a strain was happening here (Parés,
2004). The strain can be reconfirmed by the distribution of Ky,;, (Figure 8). And the observed pattern
(The observed K.y direction is near N-S, and partial K, deviated from the center with a girdle
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Figure 9. From left to right: Lithostratigraphy, bulk magnetic susceptibility (K;;), the median diameter (D50), corrected
anisotropy degree (P;), shape parameter (T), the inclinations of the minimum principal axis of the AMS ellipsoids
(Inc-Kpin), and the magnetostratigraphy of the Kaimengou section. Based on the changes in the shape of the anisotropy of
magnetic susceptibility ellipsoid and the Ky, inclination, the section can be divided into five intervals, which are indi-
cated by different colors.

distribution in the E-W direction) is interpreted as a slight to moderate tectonic strain overprint on the
original sedimentary fabric, with the main direction being E-W (Lu, Wang, & Meng, 2014; Tang et al.,
2015). And for the strain is just in a slight to moderate stage, the intensity is not strong enough to
transform the magnetic fabric after the diagenetic processes have ended (Huang et al., 2006; Parés, 2004).
Thus, we interpret our AMS records as a sensitive proxy for tectonic strain. Numerous studies have also
speculated that the magnetic fabric is a sensitive proxy, which begins to develop after deposition and
development ceases when diagenetic processes have ended (Burmeister et al., 2009; Cifelli et al., 2004;
Garcia-Lasanta et al., 2018; Garcia-Lasantaa et al., 2013).

From the foregoing, we can infer that the changes in the AMS fabrics are effected by both of the winter
monsoon and strain. The palaecowind here during early-middle Miocene was in a north-south direction.
And during the interval from 18.5 to 14 Myr, a strain was really happening here with a E-W direction in a
slight to moderate stage. To further investigate the changes in strain intensity, the profile is divided into five
intervals, as follows (Figures 9 and 10):

5.2. Evolution of Tectonic Strain in the Liupan Shan

Based on the changes in strain intensity, the profile can be divided into five intervals, as follows
(Figures 9, 10):

Interval (i) (0-8 m, 19.8-19.5 Myr; with yellow shadow): The K;, axes are almost perpendicular to the
bedding (Inc-Kn, > 70° in almost all cases), which is characteristic of a primary sedimentary fabric, and
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Figure 10. Stereographic projections of the anisotropy of magnetic susceptibility (AMS) principal axes, including maximum (Kp,ax) and minimum (Kyjp,) direc-
tions in stratigraphic coordinates, and the P;-T diagram (corrected AMS degree versus AMS shape parameter) for the five intervals of the section defined by
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an initial minor deformation occurred during this interval (Huang et al., 2006; Lu, Wang, & Meng, 2014).
The distribution of Ki,,x may become more tightly clustered for weak tectonic strain in W-E direction.

Interval (ii) (8-38 m, 19.5-18.5 Myr; with purple shadow): Although the majority of the K,;, axes are still
perpendicular to the bedding, a substantial proportion (39.2%) deviate, with an E-W-oriented distribution,
indicating that the strain was increased during this interval. This inference is confirmed by the P;-T diagram,
which shows that a high proportion of samples (92.4%) have switched from oblate (T > 0) to prolate (T < 0).
We conclude that the red clay in this interval was subjected to intermediate deformation.

Interval (iii) (38-97 m, 18.5-15.5 Myr; with blue shadow): A large proportion of the Ky, axes are perpendi-
cular to the bedding, but some have deviated. However, compared with interval (ii), the number of samples
deviating from the center is much less (11.3%), indicating that the strain decreased during this interval.
nevertheless, the strain was still substantial compared to that in interval (i), and the proportion of prolate
AMS ellipsoids is 92.8%. We conclude that this interval was subjected to minor deformation.

Interval (iv) (97-133 m, 15.5-14 Myr; with purple shadow): A large proportion of the K,,;, axes deviate from
the bedding plane (35.3%) and the densest distribution of Ky, values is in the N-S girdle, indicating greater
strain compared to interval (iii), which is confirmed by the P;-T diagram. We conclude that this interval
experienced intermediate deformation.

Interval (v) (133-168 m, 14-12.8 Myr; with yellow shadow): As in interval (i), almost all the K,;,, axes are
perpendicular to the bedding, and the K, values are distributed within a N-S direction; the proportion
of prolate AMS ellipsoids is 25.2%, indicating that the north-south wind (the winter monsoon) is the main
cause for the change in the AMS. And the direction of the K;,,x may be reinforced by a very weak tectonic
strain in W-E direction.

5.3. Interpretation of the Evolution of Tectonic Strain Affecting the Kaimengou Section

The AMS results show that the Liupan Shan experienced a series of tectonic strain events along an E-W
direction during 19.5-14 Myr. Combined with the results of previous research, we conclude that uplift
in the Liupan Shan area was closely related to the collision of the Indian and Asian plates (Li et al.,
2016; Li, Shan et al., 2017; Lin et al., 2010; Song et al., 2005; Wang et al., 2001; Zheng et al., 2006). The
northward movement of the Indian Plate caused the progressive uplift of the Tibetan Plateau
(Figure 11a). When the Tibetan Plateau was uplifted to a specific degree, the gravity effect combine with
the northward push from Indian plate, part of the plateau block migrated northward towards the Asian
plate; then a series of mountains such as Qin Lin, Kunlun Shan, Qilian Shan, and Tian Shan uplifted,
which leaded to the topography of the East West high low in China. Under the gravity effect (from the
West to the East) and the far-field influence of the collision of the plates, the plateau block escaped east-
ward via the Altyn Fault Zone, the East Kunlun Fault Zone, and the Liupan Shan Fault. Subsequently, the
motion of the plateau block was terminated by the eastern Ordos Block, and the resulting collision and
crustal extrusion resulted in the uplift of the Liupan Shan. This tectonic escape scenario, controlled by
the collision of the Indian and Asian plates, has been simulated using physical modeling (Tapponnier
et al., 2001; Tapponnier & Molnar, 1976). In addition, the distribution of the compressive strain field in
the region has been verified by GPS observations (Figure 11c; Wang et al., 2001; Yan et al., 2006).

A conceptual model is shown in Figure 11, which illustrates the timing differences between the uplift of the
Tibetan Plateau, the Liupan Shan, and the age when the strain was blocked within the strata. At time t1, the
collision of the Indian and Asian plates was initiated, and the tectonic strain instantaneously caused
the uplift of the Tibetan Plateau. Subsequently, the tectonic strain passed to the northeastern margin of
the Tibetan Plateau during /\¢, though a series of geological formations (Figure 11a). At time t2, the strain
reached the Liupan Shan; the mountains were uplifted and the strain was blocked within the strata in a very
short time (t2+/\t, /\t can be ignored in the context to the long geologic time; Figure 11b). Therefore, the
timing of the increased strain derived from the AMS records should be closer to the timing of the uplift of the
Liupan Shan but later than that of the uplift of the Tibetan Plateau.

In addition to its northeastern edge, the entire Tibetan Plateau experienced major tectonic activity during the
Miocene (Coleman & Hodges, 1994; Harrsion et al., 1992; Lu et al., 2016; Sobel & Dumitru, 1997;
Sun et al., 2005), as indicated by the following lines of evidence. (The distribution of the study sites is
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Figure 11. Conceptual model shows the timing differences in the uplift of the Tibetan Plateau, the Liupan Shan, and the
strain locked within the strata of the studied section. The yellow star is the study site. (a) Process of compression by
Indian Plate passing to the northeastern margin of the Tibetan Plateau. (b) Relationship between the uplift of the Liupan
Shan and the strain locked within the strata. (c) Global Positioning System (GPS) velocity vectors with respect to stable
Eurasia, plotted on a Digital elevation map of Asia compiled from Wang et al. (2001). At time t1, the collision of the Indian
and Asian plates caused the instantaneous uplift of the Tibetan Plateau. Subsequently, by /\, the strain was transmitted
to the northeastern margin of the Tibetan Plateau. At time t2, the strain reached the Liupan Shan, the mountain was
uplifted, and the strain was blocked within the strata.

shown in Figure 1a.): (1) Qilian Shan and Kunlun Shan: AFT and vitrinite-reflectance data confirm that the
northern Qilian Shan experienced rapid uplift from 20 to 10 Myr (George et al., 2001), as did the Kunlun Shan
(Yuan et al., 2006). (2) Tian Shan: Hendrix et al. (1994) concluded that the rapid uplift of the Tian Shan began
at the Oligocene-Miocene boundary, based on AFT dating (Hendrix et al., 1994; Sobel & Dumitru, 1997). (3)
Southern Tibet: Combining the work of Harrsion et al. (1992) in southern Tibet with that of Spicer et al.
(2003), it can be concluded that rapid uplift occurred during 20-15 Myr. (4) Guide Basin: Bio-
magnetostratigraphic studies of the Neogene sedimentary strata show that the Guide Basin experienced
clockwise rotation caused by the collision of Indian and Asian plates during the middle Miocene (Yan
et al., 2006). In addition, magnetostratigraphy, sedimentology and *’Ar/*Ar dating showed that the uplift
of the northern edge of the Tibetan Plateau occurred during the Miocene (Coleman & Hodges, 1994; Lu,
Li, & Liu, 2014; Sun et al., 2005). The occurrence of tectonic activity throughout the Tibetan Plateau on
early-middle Miocene indicates that this interval was critical for the construction of the plateau.

6. Conclusions

Our magnetostratigraphic results show that the Kaimengou red clay section spans the interval from 19.8 to
12.8 Myr. The AMS results for the sequence show that the region was persistently under strain in an E-W
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direction during this period and that the strain increased significantly during 19.5-18.5 Myr and
15.5-14.0 Myr. We attribute the strain to the far-field influence of the collision of the Indian and Asian
plates. The far-field influence of the collision of the Indian and Asian plates reached the Liupan Shan area,
which resulted in mountain building during the early-middle Miocene.

A substantial amount of research has focused on the uplift of the Liupan Shan, but by the difference in the
timing precision and the sensitivity in tracing tectonic strain, the timing of the uplift remains controversial.
Our results provide robust evidence for the timing of the uplift of the Liupan Shan and the Tibetan Plateau,
and they increase our understanding of the tectonic consequences of the collision of the Indian and Asian
plates. In addition, we find that the AMS can be used to trace tectonic strain in the red clay. And much addi-
tional research in other area needs to be done to validate it in the future research.
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